C++模板详解 —— 函数模板与类模板

C++模板详解

  • 泛型编程
  • 函数模板
    • 函数模板的概念
    • 函数模板的原理
  • 函数模板的实例化
  • 函数模板的匹配原则
  • 类模板
    • 类模板的定义格式
    • 类模板的实例化

泛型编程

如果让你编写一个函数,用于两个数的交换。在C语言中,我们会用如下方法:

void Swapi(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
// 交换两个双精度浮点型
void Swapd(double* p1, double* p2)
{double tmp = *p1;*p1 = *p2;*p2 = tmp;
}

因为C语言不支持函数重载,所以用于交换不同类型变量的函数的函数名是不能相同的,并且传参形式必须是址传递,不能是值传递。

而在学习了C++的函数重载和引用后,我们又会用如下方法实现两个数的交换:

// 交换两个整型
void Swap(int& x, int& y)
{int tmp = x;x = y;y = tmp;
}
// 交换两个双精度浮点型
void Swap(double& x, double& y)
{double tmp = x;x = y;y = tmp;
}

C++的函数重载使得用于交换不同类型变量的函数可以拥有相同的函数名,并且传参使用引用传参,使得代码看起来不那么晦涩难懂。

但是,这种代码仍然存在它的不足之处:
 1、重载的多个函数仅仅只是类型不同,代码的复用率比较低,只要出现新的类型需要交换,就需要新增对应的重载函数。
 2、代码的可维护性比较低,其中一个重载函数出现错误可能意味着所有的重载函数都出现了错误。

那我们能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成相应的代码呢?
 就像做月饼的模子一样,我们放入不同颜色的材料,就能得到形状相同但颜色不同的月饼。
 如果在C++中,也能够存在这样一个模具,通过给这个模具填充不同颜色的材料(类型),从而得到形状相同但颜色不同的月饼(生成具体类型的代码),那将会大大减少代码的冗余。巧的是前人早已将树栽好,我们只需在此乘凉。
泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。
在这里插入图片描述

函数模板

函数模板的概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。
函数模板的格式

template<typename T1,typename T2,…,typename Tn>
返回类型 函数名(参数列表)
{//函数体
}
template<typename T>
void Swap(T& x, T& y)
{T tmp = x;x = y;y = tmp;
}

注意:typename是用来定义模板参数的关键字,也可以用class代替,但是不能用struct代替。

函数模板的原理

函数模板是一个蓝图,它本身并不是函数。是编译器产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器。
在这里插入图片描述
 在编译器编译阶段,对于函数模板的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如,当用int类型使用函数模板时,编译器通过对实参类型的推演,将T确定为int类型,然后产生一份专门处理int类型的代码,对于double类型也是如此。

函数模板的实例化

用不同类型的参数使用模板时,称为模板的实例化。模板实例化分为隐式实例化和显示实例化。
一、隐式实例化:让编译器根据实参推演模板参数的实际类型

#include <iostream>
using namespace std;
template<typename T>
T Add(const T& x, const T& y)
{return x + y;
}
int main()
{int a = 10, b = 20;int c = Add(a, b); //编译器根据实参a和b推演出模板参数为int类型return 0;
}

特别注意:使用模板时,编译器一般不会进行类型转换操作。所以,以下代码将不能通过编译:

	int a = 10;double b = 1.1;int c = Add(a, b);

因为在编译期间,编译器根据实参推演模板参数的实际类型时,根据实参a将T推演为int,根据实参b将T推演为double,但是模板参数列表中只有一个T,编译器无法确定此处应该将T确定为int还是double。
 此时,我们有两种处理方式,第一种就是我们在传参时将b强制转换为int类型,第二种就是使用下面说到的显示实例化。
二、显示实例化:在函数名后的<>中指定模板参数的实际类型

#include <iostream>
using namespace std;
template<typename T>
T Add(const T& x, const T& y)
{return x + y;
}
int main()
{int a = 10;double b = 1.1;int c = Add<int>(a, b); //指定模板参数的实际类型为intreturn 0;
}

**注意:**使用显示实例化时,如果传入的参数类型与模板参数类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功,则编译器将会报错。

函数模板的匹配原则

一、一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数

#include <iostream>
using namespace std;
//专门用于int类型加法的非模板函数
int Add(const int& x, const int& y)
{return x + y;
}
//通用类型加法的函数模板
template<typename T>
T Add(const T& x, const T& y)
{return x + y;
}
int main()
{int a = 10, b = 20;int c = Add(a, b); //调用非模板函数,编译器不需要实例化int d = Add<int>(a, b); //调用编译器实例化的Add函数return 0;
}

二、对于非模板函数和同名的函数模板,如果其他条件都相同,在调用时会优先调用非模板函数,而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数,那么选择模板

#include <iostream>
using namespace std;
//专门用于int类型加法的非模板函数
int Add(const int& x, const int& y)
{return x + y;
}
//通用类型加法的函数模板
template<typename T1, typename T2>
T1 Add(const T1& x, const T2& y)
{return x + y;
}
int main()
{int a = Add(10, 20); //与非模板函数完全匹配,不需要函数模板实例化int b = Add(2.2, 2); //函数模板可以生成更加匹配的版本,编译器会根据实参生成更加匹配的Add函数return 0;
}

三、模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

#include <iostream>
using namespace std;
template<typename T>
T Add(const T& x, const T& y)
{return x + y;
}
int main()
{int a = Add(2, 2.2); //模板函数不允许自动类型转换,不能通过编译return 0;
}

类模板

类模板的定义格式

template<class T1,class T2,,class Tn>
class 类模板名
{//类内成员声明
};

例如:

template<class T>
class Score
{
public:void Print(){cout << "数学:" << _Math << endl;cout << "语文:" << _Chinese << endl;cout << "英语:" << _English << endl;}
private:T _Math;T _Chinese;T _English;
};

注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。

template<class T>
class Score
{
public:void Print();
private:T _Math;T _Chinese;T _English;
};
//类模板中的成员函数在类外定义,需要加模板参数列表
template<class T>
void Score<T>::Print()
{cout << "数学:" << _Math << endl;cout << "语文:" << _Chinese << endl;cout << "英语:" << _English << endl;
}

除此之外,类模板不支持分离编译,即声明在xxx.h文件中,而定义却在xxx.cpp文件中。

类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后面根<>,然后将实例化的类型放在<>中即可。

    //Score不是真正的类,Score<int>和Score<double>才是真正的类Score<int> s1;Score<double> s2;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/686666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在PyTorch中,如何查看深度学习模型的每一层结构?

这里写目录标题 1. 使用print(model)2. 使用torchsummary库3.其余方法&#xff08;可以参考&#xff09; 在PyTorch中&#xff0c;如果想查看深度学习模型的每一层结构&#xff0c;可以使用print(model)或者model.summary()&#xff08;如果你使用的是torchsummary库&#xff0…

2024.2.17每日一题

LeetCode N 叉树的层序遍历 429. N 叉树的层序遍历 - 力扣&#xff08;LeetCode&#xff09; 题目描述 给定一个 N 叉树&#xff0c;返回其节点值的层序遍历。&#xff08;即从左到右&#xff0c;逐层遍历&#xff09;。 树的序列化输入是用层序遍历&#xff0c;每组子节点…

机试复习-4

1.string类 string类型和数值的转换 ※数值→字符串 to_string函数 //具体做法 int i1234; string gto_string(i);//这样就转成字符串1234了 //下面就是字符串转为数字&#xff0c;类似下面还有stof,stoi,stod string d "1289347647"; int j stoi(d); cout <…

线索化二叉树(先序,中序,后序)+线索化二叉树的遍历【java详解】

目录 线索化二叉树的基本介绍&#xff1a; 举个栗子&#xff1a; 二叉树的中序线索化&#xff1a; 创建HeroNode类&#xff0c;表示节点信息&#xff1a; 编写中序线索化方法代码&#xff1a; 中序线索化遍历代码&#xff1a; 测试代码&#xff1a; 测试结果&#xff1a…

OpenHarmony系统解决方案 - 配置屏幕方向导致开机动画和Launcher显示异常

问题环境 系统版本&#xff1a;OpenHarmony-3.2-Release 问题现象 配置设备默认方向&#xff0c;例如修改为横屏显示&#xff0c;修改文件display_manager_config.xml的buildInDefaultOrientation参数值为2(Orientation::HORIZONTAL)。 源码中文件位于foundation/window/win…

在 Geoserver 中添加自定义的室内坐标系

要在 Geoserver 中添加自定义的室内坐标系&#xff0c;您需要在数据目录中的 user_projections 文件夹下创建或编辑一个 epsg.properties 文件&#xff0c;然后在文件末尾添加您的坐标系的定义&#xff0c;使用 WKT&#xff08;Well-Known Text&#xff09;格式。您还需要为您的…

WordPress站点成功升级后的介绍页地址是什么?

我们一般在WordPress站点后台 >> 仪表盘 >> 更新中成功升级WordPress的话&#xff0c;最后打开的就是升级之后的版本介绍页。比如boke112百科前两天升级到WordPress 6.4.2后显示的介绍页如下图所示&#xff1a; 该介绍除了介绍当前版本修复了多少个问题及修补了多少…

ABC341 A-G

Toyota Programming Contest 2024#2&#xff08;AtCoder Beginner Contest 341&#xff09; - AtCoder B读不懂题卡了&#xff0c;F读假题卡了&#xff0c;开题开慢了rank了 A - Print 341 题意&#xff1a; 打印一串交替出现的包含N个0&#xff0c;N1个1的01串 代码&…

2024免费人像摄影后期处理工具Portraiture4.1

Portraiture作为一款智能磨皮插件&#xff0c;确实为Photoshop和Lightroom用户带来了极大的便利。通过其先进的人工智能算法&#xff0c;它能够自动识别并处理照片中的人物皮肤、头发和眉毛等部位&#xff0c;实现一键式的磨皮美化效果&#xff0c;极大地简化了后期处理的过程。…

Switch开关(antd-design组件库)简单使用

1.Switch开关 开关选择器。 2.何时使用 需要表示开关状态/两种状态之间的切换时&#xff1b; 和 checkbox 的区别是&#xff0c;切换 switch 会直接触发状态改变&#xff0c;而 checkbox 一般用于状态标记&#xff0c;需要和提交操作配合。 组件代码来自&#xff1a; 开关 Swit…

【leetcode题解C++】51.N皇后 and 76.最小覆盖子串

51. N皇后 按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#xff0c;返回所有不同的 n 皇后问题 的解决方…

用Python和OpenCV搭建自己的一维码和QRCode扫描仪(步骤 + 源码)

导 读 本文主要介绍使用Python和OpenCV搭建自己的一维码和QRCode扫描仪&#xff08;步骤 源码&#xff09;。 项目简介 本文我们将创建一个程序来扫描图像中的二维码和条形码。对于这个程序&#xff0c;我们需要三个包&#xff0c;分别是OpenCV、NumPy和pyzbar。大多数 Pyth…

linux kernel 内存踩踏之KASAN_HW_TAGS(MTE)(三)

一、背景 linux kernel 内存踩踏之KASAN&#xff08;一&#xff09;_kasan版本跟hasan版本区别-CSDN博客 linux kernel 内存踩踏之KASAN_SW_TAGS&#xff08;二&#xff09;-CSDN博客 最后来介绍一下KASAN_HW_TAGS&#xff0c;ARM64上就是MTE&#xff0c;这个特性在ARMv8.5支…

C++数据结构与算法——栈与队列

C第二阶段——数据结构和算法&#xff0c;之前学过一点点数据结构&#xff0c;当时是基于Python来学习的&#xff0c;现在基于C查漏补缺&#xff0c;尤其是树的部分。这一部分计划一个月&#xff0c;主要利用代码随想录来学习&#xff0c;刷题使用力扣网站&#xff0c;不定时更…

电商+支付双系统项目------支付系统的构思

本篇文章会讲讲支付的一些相关的名词概念以及怎么去设计支付系统&#xff0c;通过理解支付的这些名词概念和支付系统的架构&#xff0c;为接下来写支付系统的代码做好准备。 目录 支付------支付资质 支付------支付场景 微信 付款码支付 Native支付 支付宝 条码付 扫码…

问卷设计初探:题目类型概览与注意事项梳理

问卷法常被人们应用于社会调查中&#xff0c;它能反馈出最真实的社会信息。所以&#xff0c;很多企业为了最大程度地了解市场&#xff0c;也经常使用问卷调查法进行研究。不过&#xff0c;想要发挥出问卷法的最大用处&#xff0c;前提是要将问卷设计规范并且可量化。 想要设计…

在JavaScript中的防抖函数 - 通过在React中构建自动完成功能来解释

当你将一个新应用推向生产环境时&#xff0c;你希望确保它用户友好。网站的性能是用户体验的关键部分。每个用户都希望网站及其内容能够快速加载。每一秒都是宝贵的&#xff0c;可能导致用户再也不会访问你的网站。 在本指南中&#xff0c;我们将了解JavaScript中一个非常重要…

2024.2.15 模拟实现 RabbitMQ —— 消息持久化

目录 引言 约定存储方式 消息序列化 重点理解 针对 MessageFileManager 单元测试 小结 统一硬盘操作​​​​​​​ 引言 问题&#xff1a; 关于 Message&#xff08;消息&#xff09;为啥在硬盘上存储&#xff1f; 回答&#xff1a; 消息操作并不涉及到复杂的增删查改消…

人工智能学习与实训笔记(十四):Langchain之Agent

人工智能专栏文章汇总&#xff1a;人工智能学习专栏文章汇总-CSDN博客 本篇目录 0、概要 1、Agent整体架构 2、langchain中agent实现 3、Agent业务实现逻辑 0、概要 Agent是干什么的&#xff1f; Agent的核心思想是使用语言模型&#xff08;LLM&#xff09;作为推理的大脑…

redis为什么使用跳跃表而不是树

Redis中支持五种数据类型中有序集合Sorted Set的底层数据结构使用的跳跃表&#xff0c;为何不使用其他的如平衡二叉树、b树等数据结构呢&#xff1f; 1&#xff0c;redis的设计目标、性能需求&#xff1a; redis是高性能的非关系型&#xff08;NoSQL&#xff09;内存键值数据…