STM32 HAL库 STM32CubeMX -- IWDG(独立看门狗)

STM32 HAL库 STM32CubeMX -- IWDG

  • 一、IWDG简介
  • 二、独立看门狗的工作原理
  • 三、驱动函数
    • 初始化函数HAL IWDG Init()
    • 初始化函数HAL IWDG Init()
    • 其他宏函数
  • 四、超时时间计算
    • 第一种办法
    • 第二种办法(推荐)

一、IWDG简介

看门狗(Watchdog)就是MCU上的一种特殊的定时器,用于监视系统的运行,在发生错误(例如程序出现死循环)时,能触发一个中断或产生系统复位,防止程序跑飞。STM32 有两个看门狗,一个是独立看门狗另外一个是窗口看门狗,独立看门狗号称宠物狗,窗口看门狗号称警犬。

二、独立看门狗的工作原理

独立看门狗(Independent Watchdog,IWDG)是由内部 32kHz 低速时钟 LSI 驱动的自由运行的 12 位递减计数器。LSI在时钟树上的位置如下图所示。
在这里插入图片描述
独立看门狗的内部功能框图如下图所示。
在这里插入图片描述

本节先分析独立看门狗的功能框图和它的应用;

独立看门狗用通俗一点的话来解释就是一个12 位的递减计数器,当计数器的值从某个值一直减到0 的时候,系统就会产生一个复位信号,即IWDG_RESET。如果在计数没减到0 之前,刷新了计数器的值的话,那么就不会产生复位信号,这个动作就是喂狗 。

独立看门狗一般用来检测和解决由程序引起的故障,比如一个程序正常运行的时间是50ms,在运行完这个段程序之后紧接着进行喂狗,我们设置独立看门狗的定时溢出时间为60ms,比我们需要监控的程序50ms 多一点,如果超过60ms 还没有喂狗,那就说明我们监控的程序出故障了,跑飞了,那么就会产生系统复位,让程序重新运行。

看门狗功能由VDD 电压域供电,在停止模式和待机模式下仍能工作。

1、独立看门狗时钟
独立看门狗的时钟由独立的RC 振荡器LSI 提供,即使主时钟发生故障它仍然有效,非常独立。LSI 的频率一般在30~60KHZ 之间,根据温度和工作场合会有一定的漂移,所以独立看门狗的定时时间并不一定非常精确,只适用于对时间精度要求比较低的场合。

2、计数器时钟
递减计数器的时钟由LSI 经过一个8 位的预分频器得到,在预分频器寄存器 IWDG_PR 里,有 PR[2:0]用于设置分频系数,分频系数从 4、8、16 到 256。

3、计数器
独立看门狗的计数器是一个12 位的递减计数器,最大值为0XFFF,当计数器减到0 时,会产生一个复位信号:IWDG_RESET,让程序重新启动运行,如果在计数器减到0 之前刷新了计数器的值的话,就不会产生复位信号,重新刷新计数器值的这个动作我们俗称喂狗。

4、重装载寄存器
重独立看门狗有一个重载寄存器IWDG RLR,可以设置一个 12位的重载值,例如 4000。在看门狗的递减计数器的值变为0之前,将IWDG_RLR 里的值重新载入看门狗计数器,就可以避免产生复位。超时时间Tout = (预分频因子*(重装载值+1))/LSI。关于计算超时时间在下面会详细介绍。

5、键寄存器
独立看门狗还有一个关键字寄存器 IWDG KR,其 KEY[15:0]是一个只可以写的关键字写入不同的关键字有不同的作用。
●写入 0xAAAA 时,重载寄存器 IWDG RLR 中的 12 位值就会被写入计数器,从而使计数器从头开始递减计数,避免系统复位。此操作称为刷新看门狗。
●写入 0x5555 后,才可以修改预分频器寄存器IWDG PR 和重载寄存器 IWDG_RLR 的内容。
●写入 0xCCCC 时,启动独立看门狗。
LSI时钟频率是 32kHz,看门狗最大重载值是4095(对应0xFFF),根据预分频系数可以计算出IWDG 的最长超时(timeout),如下表所示。
在这里插入图片描述

6、状态寄存器
状态寄存器SR 只有位0:PVU 和位1:RVU 有效,这两位只能由硬件操作,软件操作不了。RVU:看门狗计数器重装载值更新,硬件置1 表示重装载值的更新正在进行中,更新完毕之后由硬件清0。PVU: 看门狗预分频值更新,硬件置’1’指示预分频值的更新正在进行中,当更新完成后,由硬件清0。所以只有当RVU/PVU 等于0 的时候才可以更新重装载寄存器/预分频寄存器。

三、驱动函数

独立看门狗的驱动函数比较只有2个常规函数和几个宏函数。独立看门狗没有中断。

初始化函数HAL IWDG Init()

结构体 IWDG HandleTypeDef的定义如下,各成员变量的意义见注释:

typedef struct
{IWDG_TypeDef                 *Instance;  /*!< IWDG寄存器基地    */IWDG_InitTypeDef             Init;       /*!< IWDG 的参数 */
} IWDG_HandleTypeDef;

其中的成员变量 Init 是结构体类型 IWDG_ImitTypeDef,它定义了IWDG的参数,这个结构体定义如下,各成员变量的意义见注释:

typedef struct
{uint32_t Prescaler;  /*!< IWDG 预分频系数,也就是预分频寄存器IWDG_PR里的 PR[2:0] */uint32_t Reload;     /*!< IWDG计数器重载值,也就是重载寄存器IWDG_RLR 的值 */} IWDG_InitTypeDef;

初始化函数HAL IWDG Init()

HAL IWDG Refresh()用于刷新看门狗,就是将重载寄存器IWDG_RLR 的值重新载入看门狗计数器,避免产生系统复位。函数HAL_IWDG _Refresh()的原型定义如下,只需使用IWDC对象指针作为函数参数:
HAL_StatusTypeDef HAL IWDG Refresh(IWDG HandleTypeDef *hiwdg);

其他宏函数

文件 stm32f4xx hal iwdg.h 还有几个主要的宏函数,这些函数的输入参数__HANDLE__是独立看门狗对象指针。
●HAL_IWDGSTART(HANDLE),启动独立看门狗,就是向关键字寄存器IWDG_KR写入 0x0000CCCc。
●HAL_IWDG_RELOADCOUNTER(HANDLE),重置看门狗计数器的值,就是向关键字寄存器 IWDG_KR 写入 0x0000AAAA,这会导致重载寄存器IWDG_RLR中的值载入看门狗计数器。这个宏函数与函数HAL_IWDG_RefreshO的功能相同。
●IWDG_ENABLE_WRITE ACCESS(HANDLE),使预分频寄存器IWDG_PR 和重载存器 IWDG_RLR 变为可写的,其代码就是向关键字寄存器 IWDG_KR 写入 0x00005555。
●IWDG_DISABLE_WRITEACCESS(HANDLE),使预分频寄存器IWDG_PR 和重载寄存器 IWDG_RLR 变为不可写的,其代码就是向关键字寄存器 IWDG KR 写入0x00000000。

四、超时时间计算

在这里插入图片描述
通过查阅多个文档和网上各种资料,有两种计算办法
两种办法大家酌情选择

第一种办法

Tout = ( (4*2^PR) * (RLV+1) )/ LSI;其中PR为上图中预分频系数对应的PR[2:0]位、RLV为重装载值(0 ~ 4095)、LSI为内部低速时钟,也就是驱动IWDG的时钟,F1一般LSI为40kHz ;

示例:
以F1为例,LSI为40kHz、预分频系数为8,PR为1、RLV为04095
最短时间:RLV为0,Tout = ((4*2^PR)*(RLV+1)) / LSI = ((4*2)*(0+1)) / 40000 = 0.0002s = 0.2ms
最长时间:RLV为4095,Tout = ((4*2^PR)*(RLV+1)) / LSI = ((4*2)*(4095+1)) / 40000 = 0.8192s = 8192ms

第二种办法(推荐)

Tout = (预分频系数 * (重装载值+1)) / LSI;其中预分频系数和重装载值为直接设置的,后面结合配置STM32Cube MX会很方便;LSI为内部低速时钟,F1一般为40kHz;

示例:
以F1为例,LSI为40kHz、预分频系数为8,重装载值为04095
最短时间:重装载值为0,Tout = (预分频系数*重装载值) / LSI = (8*1) / 40000 = 0.0002s = 0.2ms
最长时间:重装载值为4095,Tout = (预分频系数*重装载值) / LSI = (8*4096) / 40000 =0.8192s = 8192ms

这两种办法都可以算出上表中的数值,其实仔细分析这两种办法,原理其实都一样,为例方便算一点推荐使用第二种办法。

四、STM32Cube MX 配置
基础STM32Cube MX的配置参考这篇博客:STM32 CubeMx教程 – 基础知识及配置使用教程

配置RCC,使用外部晶振模式
在这里插入图片描述

配置SYS,debug模式选择Serial Wire
在这里插入图片描述

参数设置部分只有两个参数:
配置IWDG,先启用独立看门狗,配置预分频系数为32,重装载值为124;
Tout = (32*(124+1))/ 40000 = 100ms
在这里插入图片描述

使用一个串口用来打印调试信息,设置为异步通信模式
在这里插入图片描述

配置时钟树,从图上可以看到里面默认的LSI RC振荡时钟 40kHz ,LSI时钟配置到了IWDG
在这里插入图片描述

涉及到IWDG(独立看门狗)的函数有两个:

MX_IWDG_Init(); 	//独立看门狗初始化
HAL_IWDG_Refresh(&hiwdg);	//喂狗

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/684195.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【AIGC】Stable Diffusion的模型入门

下载好相关模型文件后&#xff0c;直接放入Stable Diffusion相关目录即可使用&#xff0c;Stable Diffusion 模型就是我们日常所说的大模型&#xff0c;下载后放入**\webui\models\Stable-diffusion**目录&#xff0c;界面上就会展示相应的模型选项&#xff0c;如下图所示。作者…

计算机网络——多媒体网络

前些天发现了一个巨牛的人工智能学习网站 通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff0c; 跳转到网站 小程一言 我的计算机网络专栏&#xff0c;是自己在计算机网络学习过程中的学习笔记与心得&#xff0c;在参考相关教材&#xff0c;网络搜素…

保育员考试怎么搜题找答案?9个不限次的公众号和软件分享啦! #经验分享#学习方法

学会运用各类学习辅助工具和资料&#xff0c;是大学生培养自主学习能力和信息获取能力的重要途径之一。 1.粉鹿搜题 这是一个公众号 使用方法也很简单&#xff0c;将题目发送至公众号后台&#xff0c;即可得到题目答案~ 下方附上一些测试的试题及答案 1、下列哪项是聚合式联…

DS Wannabe之5-AM Project: DS 30day int prep day18

Q1. What is Levenshtein Algorithm? Levenshtein算法&#xff0c;也称为编辑距离算法&#xff0c;是一种量化两个字符串之间差异的方法。它通过计算将一个字符串转换成另一个字符串所需的最少单字符编辑操作次数来实现。这些编辑操作包括插入、删除和替换字符。Levenshtein距…

掌握Go并发:Go语言并发编程深度解析

&#x1f3f7;️个人主页&#xff1a;鼠鼠我捏&#xff0c;要死了捏的主页 &#x1f3f7;️系列专栏&#xff1a;Golang全栈-专栏 &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&…

第三讲 数据存储

面向磁盘的架构 DBMS 假定数据库的主要存储位置位于非易失性磁盘【non-volatile disk】上。 DBMS 的组件管理非易失性【non-volatile】和易失性【volatile】存储之间的数据移动。 为了理解来回移动数据的影响&#xff0c;我们首先要先理解存储层次结构是什么样的。 存储层次【…

文生图提示词:气候特征

天气和气候 --气候特征 Climate Features 气候特征的基本词汇&#xff0c;涵盖了温度和湿度的变化&#xff0c;以及它们在不同气候类型中的体现。 Hot 炎热 Cold 寒冷 Warm 温暖 Cool 凉爽 Humid 湿润 Dry 干燥 Mild 温和 Chilly 冷飕飕 Freezing 冰冻 Sweltering 酷热 Frosty …

RK3568平台开发系列讲解(实验篇)杂项设备驱动实验

🚀返回专栏总目录 文章目录 一、什么是杂项设备驱动二、杂项设备的注册和卸载三、杂项设备驱动实验代码沉淀、分享、成长,让自己和他人都能有所收获!😄 一、什么是杂项设备驱动 在 Linux 中,把无法归类的五花八门的设备定义成杂项设备。相较于字符设备,杂项设备有以下两…

企业数字化转型战略规划与实践:迈向未来的关键之举

在信息技术的不断革新和全球数字化浪潮的推动下&#xff0c;企业数字化转型已经成为当今商业世界中不可或缺的一项战略规划。随着技术的进步&#xff0c;企业必须积极应对数字化转型的挑战&#xff0c;并将其作为发展的关键驱动力。本文将探讨企业数字化转型的重要性&#xff0…

幻兽帕鲁联机服务器搭建新手小白教程

这里分为两种搭建方式&#xff0c;都是采用的一键搭建的傻瓜式教程&#xff0c;1分钟就可以搞定。 一、通过阿里云一键部署幻兽帕鲁服务器 以下教程基于阿里云服务器来搭建幻兽帕鲁游戏服务器&#xff0c;通过一键部署的方式&#xff0c;最快1分钟即可完成部署。 阿里云一键…

【白话前端】一篇文章区分js库和js框架

假定你选择自助游&#xff0c;你需要找不同服务商帮你解决吃住行的问题&#xff0c;这些服务商就是js库。你也可以选择旅行社&#xff0c;给你全解决&#xff0c;这是js框架。 JavaScript库和框架都是用于简化Web开发的工具&#xff0c;但它们之间有一些区别。 JavaScript库&a…

【Java多线程】Thread类的基本用法

目录 Thread类 1、创建线程 1.1、继承 Thread&#xff0c;重写run 1.2、实现 Runnable&#xff0c;重写run 1.3、使用匿名内部类&#xff0c;继承 Thread&#xff0c;重写run 1.4、使用匿名内部类&#xff0c;实现 Runnable&#xff0c;重写run 1.5、使用 lambda 表达式…

Swift Combine 级联多个 UI 更新,包括网络请求 从入门到精通十六

Combine 系列 Swift Combine 从入门到精通一Swift Combine 发布者订阅者操作者 从入门到精通二Swift Combine 管道 从入门到精通三Swift Combine 发布者publisher的生命周期 从入门到精通四Swift Combine 操作符operations和Subjects发布者的生命周期 从入门到精通五Swift Com…

KMS知识管理系统:一文扫盲,体验为王,落地为皇

知识管理系统是学习型组织的必备&#xff0c;重要性不言而喻&#xff0c;但是往往在执行中不能落地&#xff0c;本位尝试做些KMS的扫盲。 一、KMS是什么 知识管理系统&#xff08;英语&#xff1a;Knowledge management system&#xff09;是一种用于管理和共享企业内部知识的…

如何为你的幻兽帕鲁服务器手动配置虚拟内存或Swap、Zram

其实非常简单&#xff0c;如果是Windows系统服务器的话&#xff0c;直接远程连接到服务器桌面。 连上之后&#xff0c;打开设置&#xff0c;找到“高级系统设置” 可以参考视频教程&#xff1a; 拒绝卡顿&#xff01;幻兽帕鲁服务器内存优化攻略&#xff01; 详细教程地址&…

深度学习之梯度下降算法

梯度下降算法 梯度下降算法数学公式结果 梯度下降算法存在的问题随机梯度下降算法 梯度下降算法 数学公式 这里案例是用梯度下降算法&#xff0c;来计算 y w * x 先计算出梯度&#xff0c;再进行梯度的更新 import numpy as np import matplotlib.pyplot as pltx_data [1.0,…

2024 前端面试题(GPT回答 + 示例代码 + 解释)No.21 - No.40

本文题目来源于全网收集&#xff0c;答案来源于 ChatGPT 和 博主&#xff08;的小部分……&#xff09; 格式&#xff1a;题目 h3 回答 text 参考大佬博客补充 text 示例代码 code 解释 quote 补充 quote 上一篇链接&#xff1a;2024 前端面试题&#xff08;GPT回答 示例…

基于HTML5实现动态烟花秀效果(含音效和文字)实战

目录 前言 一、烟花秀效果功能分解 1、功能分解 2、界面分解 二、HTML功能实现 1、html界面设计 2、背景音乐和燃放触发 3、燃放控制 4、对联展示 5、脚本引用即文本展示 三、脚本调用及实现 1、烟花燃放 2、燃放响应 3、烟花canvas创建 4、燃放声音控制 5、实际…

vue3 之 商城项目—结算模块

路由配置 chekout/index.vue <script setup> const checkInfo {} // 订单对象 const curAddress {} // 地址对象 </script> <template><div class"xtx-pay-checkout-page"><div class"container"><div class"w…

医院三基怎么搜题答案? #学习方法#学习方法#微信

在大学生的学习过程中&#xff0c;遇到难题和疑惑是常有的事情。然而&#xff0c;随着互联网的普及和技术的发展&#xff0c;搜题和学习软件成为了大学生们解决问题的利器。今天&#xff0c;我将向大家推荐几款备受大学生喜爱的搜题和学习软件&#xff0c;帮助我们更好地应对学…