【头歌·计组·自己动手画CPU】三、存储系统设计(HUST)(理论版) 【计算机硬件系统设计】

🕺作者: 主页

我的专栏
C语言从0到1
探秘C++
数据结构从0到1
探秘Linux

😘欢迎 ❤️关注 👍点赞 🙌收藏 ✍️留言

文章目录

    • 一、课程设计目的
    • 二、课程设计内容
    • 三、课程设计步骤
    • 四、课程设计总结

一、课程设计目的

理解计算机中重要部件—存储器,要求掌握存储扩展的基本方法,能设计 MIPS 寄存器堆、MIPS RAM 存储器。能够利用所学习的 cache 的基本原理设计直接相联、全相联,组相联映射的硬件cache。

二、课程设计内容

  1. 汉字字库存储芯片扩展实验
    1. 实验目的

理解存储系统进行位扩展、字扩展的基本原理,能利用相关原理解决实验中汉字字库的存储扩展问题,并能够使用正确的字库数据填充

  1. MIPS寄存器文件设计
    1. 实验目的

了解 MIPS 寄存器文件基本概念,进一步熟悉多路选择器、译码器、解复用器等 Logisim 组件的使用,并利用相关组件构建 MIPS 寄存器文件

  1. MIPS RAM设计
    1. 实验目的

理解主存地址基本概念,理解存储位扩展基本思想,并能利用相关原理构建能同时支持字节、半字、字访问的存储子系统

  1. 全相联cache设计
    1. 实验目的

掌握 cache 实现的三个关键技术:数据查找,地址映射,替换算法,熟悉译码器,多路选择器,寄存器的使用,能根据不同的映射策略在 Logisim 平台中用数字逻辑电路实现 cache 机制

  1. 直接相联cache设计
    1. 实验目的

掌握 cache 实现的三个关键技术:数据查找,地址映射,替换算法,熟悉译码器,多路选择器,寄存器的使用,能根据不同的映射策略在 Logisim 平台中用数字逻辑电路实现 cache 机制

  1. 4路组相连cache设计
    1. 实验目的

掌握 cache 实现的三个关键技术:数据查找,地址映射,替换算法,熟悉译码器,多路选择器,寄存器的使用,能根据不同的映射策略在 Logisim 平台中用数字逻辑电路实现 cache 机制

  1. 2路组相联cache设计
    1. 实验目的

掌握 cache 实现的三个关键技术:数据查找,地址映射,替换算法,熟悉译码器,多路选择器,寄存器的使用,能根据不同的映射策略在 Logisim 平台中用数字逻辑电路实现 cache 机制

三、课程设计步骤

  1. 汉字字库存储芯片扩展实验
    1. 原理

汉字点阵为1616位。需要8片16K32位ROM来存储点阵信息。我们需要用4片4K32位ROM代替其中一片16K32位ROM。4K需要12根地址线,16K需要14根地址线。所以高位多余的两位作为片选信号。我们需要一个数据选择器,来进行选择输出那一片ROM中的数据。再根据数据进行分析,数据的最后两位是选片区的。所以将最后两位直接输入到选择器选择短。最后将数据对应连接,即可得到电路。

  1. 接线图

image.png

  1. MIPS寄存器文件设计
    1. 原理

首先需要实现读取逻辑。假设R1#和R2#分别为两位宽的信号,并且设置数据选择器的位宽也为两位。这样,我们可以通过R1#和R2#来确定RD1和RD2,从而获取指定编号寄存器中的数值。

举例来说,当R1#为10时,表示选择2号寄存器。每个寄存器的输出都需要连接到相应的数据选择器的数据输入端。

接下来,我们要实现写入逻辑。系统总共有4个寄存器,因此我们可以使用译码器将W#转换为4个片选信号,分别表示0-3号寄存器。

当WE为1时,表示可以进行数据写入。因此,我们可以将片选信号和WE信号通过与门进行连接。

最后,将数据输入连接到相应的寄存器即可得到完整的电路。

另外,需要注意的是,0号寄存器需要保持为零,所以数据输入也需要设置为零。

  1. 接线图

image.png

  1. MIPS RAM设计

    1. 原理
  2. 寄存器部分:使用4片8位寄存器,字节地址的低两位用于片选信号,其余位作为地址信号输入到寄存器中。

  3. 模式选择:使用模式选择信号Mode[1:0],通过译码器将模式信号转换为1位宽的信号,以便进行逻辑判断。

  4. 读取逻辑:

  • 字读取:当模式为字读取时,直接输出全部数据。
  • 半字读取:通过字节地址的第二低位确定输出哪个半字。
  • 字节读取:通过字节地址的低两位确定输出哪个字节。
  1. 写入逻辑:
  • 字写入:根据模式为字写入(00)
  • 字节写入:根据模式为字节写入(01)
  • 半字写入:根据模式为半字写入(10),字节地址的倒数第二位决定选择哪两个片选信号。
  1. 片选信号和存储器的写入信号进行连接,决定是否执行写入操作。

    1. 接线图image.png
  2. 全相联cache设计

    1. 原理

全相联映射是一种Cache存储方式,其中主存中的任意一块可以存在于Cache中的任意位置。这种映射方式可以提高命中率,但也增加了硬件开销。

当CPU访问Cache中的某一字节时,它会给出一个9位地址。其中低5位表示该字节在Cache块的32个字节中的位置,高4位表示该字节属于主存16个块中的哪一个块。

由于Block在Cache中的位置是不确定的,CPU在查找数据时首先使用9位地址中的块序号的高4位与Cache中块的序号进行比对。因此,在Cache中存储数据时需要额外的空间来存储块的序号,即Tag位。有时还需要一些空间来表示Cache的有效位,以标记Cache中的内容是否有效。在初始化时,这些有效位可以被置为0,表示无效状态。

  1. 接线图image.png

  2. 直接相联cache设计

    1. 原理
  3. 将主存地址拆分为标记(tag)、行索引(index)和字地址(offset)。

  • 标记位长度为11位,用于表示主存块在Cache中的唯一标识。
  • 行索引位长度为3位,用于选择Cache中的行。
  • 字地址位长度为2位,用于选择Cache块中的字节。
  1. 读取逻辑:
  • 使用行索引作为译码信号,获取对应行的选择信号。
  • 每个Cache槽需要包含三个寄存器:valid(有效位)、tag(标记位)和data(数据位)。
  • 使用三态门和行选择信号,将输入和输出数据分别与对应的寄存器连接。
  • 当数据有效且标记位与主存地址的标记位相同时,表示命中。
  1. 写入逻辑:
  • 当写入信号为真且未命中(即数据失效),需要将主存中的数据加载到Cache中。
  • 首先使用行索引选择对应的行,然后更新标记位、数据位和有效位。

通过上述逻辑实现直接相联映射关系的Cache,可以进行读取和写入操作,并根据标记位和有效位判断是否命中。

  1. 接线图image.png
  2. 4路组相连cache设计
    1. 原理

假设cache块大小为4W,共8行。字节地址为16位,分为tag、index和offset三个部分。由于块大小为4W,故offset为2位;cache共8行,一组有4行,因此index为1位;tag则为13位。

  1. 组索引译码器:组索引index字段经过组索引译码器生成若干组索引译码信号,这些信号用于选择对应的cache组。

  2. 数据输出控制:所有行数据输出采用三态门控制输出至系统数据总线。行译码信号L0-L7连接至对应的三态门控制端,只有组译码信号有效的组才会进行输出。这样可以确保同一时刻只有一行输出。

  3. 数据命中:当选中行的有效位为1且标记位与字节地址中的tag相同时,表示数据命中。命中信号hit控制最终的字选择多路选择器的使能端,确定具体输出选中行中哪一个字,从而实现数据的查找和访问。

  4. 数据未命中处理:Miss信号为1时表示数据未命中。当Miss信号和BlkReady信号同时为1时,结合组索引译码信号,通过淘汰计数器和LRU算法,决定替换组中的哪一行。然后对cache中相应行的valid信号、tag和data进行修改,最后取出正确数据。

    1. 接线图image.png
  5. 2路组相联cache设计

    1. 原理

原理和4路组相联cache相同

  1. 接线图image.png

四、课程设计总结

通过这次课程设计,我深入理解了计算机中重要部件——存储器,并掌握了存储扩展的基本方法。我学会了设计MIPS寄存器堆和MIPS RAM存储器,并能利用所学的基本原理设计直接相联、全相联和组相联映射的硬件cache。
在汉字字库存储芯片扩展实验中,我理解了存储系统进行位扩展和字扩展的基本原理,并成功解决了汉字字库的存储扩展问题。我学会了使用正确的字库数据填充,并将数据选择器与ROM进行连接,以实现对应数据的输出。
在MIPS寄存器文件设计中,我进一步熟悉了多路选择器、译码器和解复用器等Logisim组件的使用。我成功构建了MIPS寄存器文件,并实现了读取逻辑和写入逻辑。我了解到0号寄存器需要保持为零,因此在数据输入时也需要设置为零。
在MIPS RAM设计中,我理解了主存地址的基本概念和存储位扩展的基本思想。我成功构建了能同时支持字节、半字和字访问的存储子系统。我学会了使用模式选择信号和译码器进行逻辑判断,并根据不同的模式进行读取和写入操作。
在全相联cache设计中,我掌握了cache实现的三个关键技术:数据查找、地址映射和替换算法。我熟悉了译码器、多路选择器和寄存器的使用,并能根据不同的映射策略在Logisim平台中用数字逻辑电路实现cache机制。我学会了使用标记位、行索引和字地址来确定数据的位置和命中情况。
在直接相联cache设计中,我进一步加深了对cache实现的三个关键技术的理解。我学会了将主存地址拆分为标记、行索引和字地址,并通过译码器和有效位对数据进行选择和输出。我了解到需要设置有效位、标记位和数据位,并根据标记位和有效位判断是否命中。
在4路组相联cache设计和2路组相联cache设计中,我进一步加深了对cache实现的三个关键技术的掌握。我熟悉了组索引译码器和数据输出控制的使用,并了解到数据命中和数据未命中处理的过程。我学会了使用替换算法和LRU算法,以确定替换组中的哪一行,并对cache中的相关信号进行修改和取出正确数据。
通过这次课程设计,我不仅提高了对存储器的理解和设计能力,还加深了对数字逻辑电路的认识。我将继续努力学习,提高自己在计算机硬件方面的知识和技能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/683116.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

猫头虎分享:2024年值得程序员关注的技术发展动向分析

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …

HarmonyOS鸿蒙学习基础篇 - Column/Row 组件

前言 Row和Column组件是线性布局容器,用于按照垂直或水平方向排列子组件。Row表示沿水平方向布局的容器,而Column表示沿垂直方向布局的容器。这些容器具有许多属性和方法,可以方便地管理子组件的位置、大小、间距和对齐方式。例如&#xff0c…

从C向C++7——继承

一.继承 1.理解继承 C中的继承是类与类之间的关系,是一个很简单很直观的概念,与现实世界中的继承类似,例如儿子继承父亲的财产。 继承可以理解为一个类从另一个类获取成员变量和成员函数的过程。例如类 B 继承于类 A,那么 B 就…

Codeforces Round 924(Div.2) A~E

A.Rectangle Cutting (模拟) 题意: 给出一个长方形,通过平行于原始矩形的一条边进行切割,将该矩形切割成两个边长为整数的矩形。询问是否能通过旋转和移动这两个矩形,得到新的矩形。 分析: 可以发现拼成的新长方形…

Python算法探索:从经典到现代(三)

一、引言 随着信息技术的飞速发展,数据已经成为现代社会不可或缺的资源。Python,作为数据处理和分析的利器,为我们提供了大量强大的库和工具,用于从经典到现代的各种算法探索。本文将带你领略Python在算法领域的魅力,从…

COW AI接入到微信 保姆教程 (部署在服务器,插件安装)

此文章不涉及国外的AI模型,也无需翻墙,跟某AI模型无关,审核大哥别弄错了 最近的AI开始越开越火了,开始介入到我们生活中的方方面面。就有人好奇AI是否能接入到微信吗?我在GitHub上搜索的时候还真有除了对话外还可以通…

MySQL 基础知识(五)之数据增删改

目录 1 插入数据 2 删除数据 3 更改数据 创建 goods 表 drop table if exists goods; create table goods ( id int(10) primary key auto_increment, name varchar(14) unique, stockdate date )charsetutf8; 1 插入数据 当要插入的数据为日期/时间类型时,如果…

Spring Boot 笔记 021 项目部署

1.1 引入坐标,并双击package打包成jar包 1.2 在服务器上运行jar包 1.3 使用postman测试 2.1 运行配置 2.1.1 命令更改端口 java -jar big-event-1.0-SNAPSHOT.jar --server.port7777 2.1.2 环境变量更新(略) 2.1.3 外部配置文件&#xff0c…

日期类运算符重载以及const成员详细解析

个人主页:点我进入主页 专栏分类:C语言初阶 C语言进阶 数据结构初阶 Linux C初阶 算法 欢迎大家点赞,评论,收藏。 一起努力,一起奔赴大厂 目录 一.前言 二.运算符重载 2.1概念 2.2比较的符号重载 2.2.1…

ZBX_NOTSUPPORTED: Unsupported item key. 原因排查

进行自定义监控项时,在zabbix-agent端测试没问题,却在zabbix-server进行测试时,出现 ZBX_NOTSUPPORTED: Unsupported item key. 1.在zabbix-agent测试没问题,证明自定义监控项的脚本没问题,却在zabbix-server端测试出…

点击侧边栏菜单时只切换 <router-view> 中的内容,而不是进行整个页面的路由跳转(动态路由)

解决方法&#xff1a;在 <el-menu> 的 select 事件中调用了 handleMenuSelect 方法来处理菜单项的选择。你可以在 handleMenuSelect 方法中根据菜单项的 index 来执行相应的操作&#xff0c;例如更新组件内的数据或者切换组件。由于整个页面的路由路径并没有改变&#xf…

平时积累的FPGA知识点(7)

平时在FPGA群聊等积累的FPGA知识点&#xff0c;第七期&#xff1a; 11 描述扇出的xilinx官方文档是&#xff1f; 解释&#xff1a;ug949 12 在BD中如何指定某个IP用global&#xff0c;其他的用OOC模式&#xff1f;因为某个模块引用的IP带着XPM&#xff0c;综合不了 解释&am…

代码随想录Day50 | 70. 爬楼梯 322. 零钱兑换 279.完全平方数

代码随想录Day50 | 70. 爬楼梯 322. 零钱兑换 279.完全平方数 70.爬楼梯322.零钱兑换279.完全平方数 70.爬楼梯 文档讲解&#xff1a;代码随想录 视频讲解&#xff1a; 状态 dp数组 dp[j]表示爬上第j阶台阶需要的方法数递推公式&#xff0c;由于在每一阶台阶可以向上走1~m阶&a…

代码随想录算法训练营Day57|647. 回文子串、516.最长回文子序列、动态规划总结

目录 647. 回文子串 前言 思路 算法实现 516.最长回文子序列 前言 思路 算法实现 动态规划总结 动规五部曲回顾 动规各小专题问题 647. 回文子串 题目链接 文章链接 前言 本题利用动态规划求解时&#xff0c;dp数组的定义与前面的就有些不同了&#xff0c;是难点之…

随机过程及应用学习笔记(三)几种重要的随机过程

介绍独立过程和独立增量过程。重点介绍两种独立增量过程-—维纳过程和泊松过程。 目录 前言 一、独立过程和独立增量过程 1、独立过程&#xff08;Independent Process&#xff09; 2、独立增量过程&#xff08;Independent Increment Process&#xff09; 二、正态过程&am…

debug - 打补丁 - 浮点数加法

文章目录 debug - 打补丁 - 浮点数加法概述笔记demo用CE查看汇编(x64debug)main()update_info()快捷键 - CE中查看代码时的导航打补丁的时机 - 浮点数加法补丁代码补丁效果浮点数寄存器组的保存END debug - 打补丁 - 浮点数加法 概述 在cm中, UI上显示的数值仅仅用来显示, 改…

力扣---通配符匹配

题目描述&#xff1a; 给你一个输入字符串 (s) 和一个字符模式 (p) &#xff0c;请你实现一个支持 ? 和 * 匹配规则的通配符匹配&#xff1a; ? 可以匹配任何单个字符。 * 可以匹配任意字符序列&#xff08;包括空字符序列&#xff09;。 判定匹配成功的充要条件是&#xff…

华为23年9月笔试原题,巨详细题解,附有LeetCode测试链接

文章目录 前言思路主要思路关于f函数的剖析Code就到这&#xff0c;铁子们下期见&#xff01;&#xff01;&#xff01;&#xff01; 前言 铁子们好啊&#xff01;今天阿辉又给大家来更新新一道好题&#xff0c;下面链接是23年9月27的华为笔试原题&#xff0c;LeetCode上面的ha…

开源≠不赚钱,开源软件盈利的7大模式。

开源不是目的&#xff0c;目的是圈用户&#xff0c;留住用户&#xff0c;盈利自然不成问题。 开源系统可以通过多种方式赚钱&#xff0c;以下是其中几种常见的方式&#xff1a; 提供付费支持&#xff1a; 开源系统可以提供付费的技术支持服务&#xff0c;包括安装、配置、维…

mysql5.6安装---windows版本

安装包下载 链接&#xff1a;https://pan.baidu.com/s/1L4ONMw-40HhAeWrE6kluXQ 提取码&#xff1a;977q 安装视频 1.解压完成之后将其放到你喜欢的地址当中去&#xff0c;这里我默认放在了D盘&#xff0c;这是我的根目录 2.配置环境变量 我的电脑->属性->高级->环境…