嵌入式中详解 ARM 几个常见的寄存器方法

大家好,今天来聊聊对于ARM几个特殊寄存器的理解,FP、SP和LR。

1、介绍
  • FP:栈顶指针,指向一个栈帧的顶部,当函数发生跳转时,会记录当时的栈的起始位置。

  • SP:栈指针(也称为栈底指针),指向栈当前的位置,

  • LR:链接寄存器,保存函数返回的地址。

关于gcc就有一个关于stack frame的优化选项,加上该选项则忽略掉FP栈顶指针,(记得高版本默认是不加FP的,gcc4.8以上吧(待确认))

  • -fomit-frame-pointer

Don’t keep the frame pointer in a register for functions that don’t need one. This avoids the instructions to save, set up and restore frame pointers; it also makes an extra register available in many functions. It also makes debugging impossible on some machines.

(大概意思 )不需要栈帧的时候不要加这个编译选项,这可以节省很多指令去保存,传递和恢复,同时也省出一个寄存器可以在函数中做更多事情,也使得在某些机制下更容易去debug

arm cc5编译也有关于FP生成的编译选项,默认是不加的。

  • –use_frame_pointer, --no_use_frame_pointer

Sets the frame pointer to the current stack frame. Using the --use_frame_pointer option reserves a register to store the 「frame pointer」. For newer processors that support Thumb-2 technology (ARMv6T2 and later), the reserved register is always R11. (arm v7)如果是arm v8 -a 系列,则是X29来表示。For older processors that do not support Thumb-2 technology, the reserved register is R11 in ARM code and R7 in Thumb code. Default「The default is --no_use_frame_pointer」. That is, register R11 (or register R7 for Thumb code on older processors) is available for use as a general-purpose registe

2、作用
2.1 FP的作用

关于APCS(ARM Procedure Call Standard,ARM 程序调用标准)的说法 ,

  • 除非子程序没有修改链接寄存器,否则FP都需要记录有效的栈帧位置

  • 其寄存器(r11或者x29)不能被用做一个通用型的寄存器

FP的主要作用就是用来「栈回溯」,找到子程序的调用关系,也成为backtrace,当然一级一级的子程序调用时,FP的记录也在变化,也会一级一级的保存到栈中,最后通过FP的值来反推出一级一级的调用关系。

图片

以ARM CC5 编译器为例,其栈回溯的主要逻辑如下图所示:

图片

通过上图可以看出,main->fun1->fun2,每调用一级的时候,都会将FP、LR以及参数等压栈,而每个FP指向了上一级的栈顶,通过保存关系,可以找到LR,从而找到上一级的调用函数。

具体的流程图就如右图所示,按照这样的方法可以找到backtrace,再比如可以通过stack memory查找调用栈信息,

图片

图片

左图为栈memory 右图为寄存器信息。

上图中:backtrace 第一级是寄存器中的LR,之后就是从栈中进入回溯来找到的。(FP、LR) 1、0x1F7BC 0x40BBAA4 2、0x1F7E4 0x18A3C 3、0x1F7EC 0x18818 4、 0x1F7F4 0x40A4108 5、 0x1F7FC 0x1594 6、 0x184BC 0x40A0015

图中 LR地址都-4 这是因为LR总是保存PC的下一个运行地址,所以找到PC进函数的位置,则需要LR-4可以得到。

图中 最后栈停止回溯,可以看到栈的边界到了0x1f800,所以停止,不然会继续一直进行回溯。

backtrace的C代码如下

void get_backtrace(u32 lr, u32 fP)
{u8 backtrace_deep = 0u32 stack_limit=getStackLimit()u32 stack_base=getStackBase()printf("Bactrace info:\n")do{if((fp <= stack_base) &&(fp >= stack_limit))break;lr = *(u32*)(fp)lr (lr == OxFFFFFFFF || lr == 0x0)break;fp=*(u32*)(fp-sizeof(u32))if(backtrace_deep++>MAX_BACKTRACE_DEPTH)break;}while(1);printf("\n");
}
12345678910111213141516171819
2.2 SP的作用

sp 为栈指针,通过push pop 实现对栈存储的访问,栈主要是用来存储局部变量 中间值 等数据,同样和全部变量等存储的区域一样,也是一块memory,没有任何区别,只是使用的方式不一样。

接下来简单介绍一下各个处理器架构的SP指针。

  • CortexM3/4(ARMv7)

  1. CortexM3/4中,「SP分为MSP与PSP」,主栈与线程栈,任何时刻只有一个栈指针有效,通过「CONTROL 寄存器」来选择栈指针。

  2. 程序刚运行时就处在主栈(特权模式),之后可以切到线程栈(非特权模式),之所以设置这样的原因是,一般OS会运行在主栈,而应用程序出在线程栈,应用程序即使出错,也不会影响OS的运行,也不会影响主栈。通过简单的程序无需这样运行,直接在主栈特权模式下面运行就可以。

  3. MSP的初值通过存储器的第一个DWORD中获取。

  4. MSP与PSP 都是32位,低两位均是0.

图片

  • CortexR5(Cortexv7)

  1. Cortex R5系列比较复杂,继承了多种工作模式的特性,大多数模式下都有独立的栈。

    图片

  2. 总共七种工作模式,SYS/FIQ/SYS/SVC/ABORT/IRQ/UND 以及USER,前面六种都是特权模式 后面是用户模式也是非特权模式。可以看到基本都有独立的栈寄存器,意味着每个模式下可以设置独立的栈空间

  3. 图片

图片

  • CortexA53 (ARMv8 -A系列)

  1. 其有变化了 分为EL1 EL2 EL3 EL4四种模式(AArch64状态)。每种模式下有自己的SP指针,SP_EL0,SP_EL1,SP_EL2,SP_EL3。通过SPSel来选择是哪一种的SP指针。

  2. 图片

  3. SP_EL1t 代表SP_EL0的指针,SP_ELxH代表相应等级下的SP指针。

  4. 如果用作基址运算时,SP的低四位[3:0]必须为0,否则会产生SP非对齐异常,系统自动会进行check。

CheckSPAlignment()bits(64) sp = SP[];if PSTATE.EL == EL0 thenstack_align_check = (SCTLR[].SA0 != '0');elsestack_align_check = (SCTLR[].SA != '0');if stack_align_check && sp != Align(sp, 16) thenAArch64.SPAlignmentFault();
return;
123456789

由下图可以看到EL3下的SP有值,且与系统的SP值相同(X15下面),则处于EL3模式。

图片

2.3 LR的作用
  1. LR为程序跳转时需要用到的寄存器,用来保存「返回地址」(同时也包含异常返回地址)。

  2. 程序经常会存在调用关系,当程序执行完子程序之后,肯定会返回到主程序,这是返回到主程序的地址就是在LR保存。

  3. 在一些CorteM系列的处理,LR的第0位会置1 表示,表示Thumb状态。

  4. 当然没有LR这个寄存器也可以的,直接将返回地址保存到栈中,最后执行完之后弹出到PC也行,但是寄存器的访问速度可以远高于栈(存储器SRAM),所以LR的作用还是很明显的。

  5. 此外对应ARMv8系列,还有ELR寄存器,对应的是异常状态下的返回地址。

    a. 当程序执行到异常时,异常的返回地址保存到ELR中,当然ARMv8有四种模式,EL0没有异常处理,所以只有三个ELR寄存器,处理三种异常时的返回地址。b. AArch32到AArch64状态时,保存的是32位的地址,高8位均为0。

  6. 图片

2.3.1 LR的地址保存

当假如程序A->B->C,

void A()
{....  //1地址B();  //;BL B.... //2地址return;
}
void B()
{.... //3地址C(); //BL C.... //4地址return;  //pop lr->PC
}
void C()
{....return; //B LR
}
12345678910111213141516171819
  1. 程序A调用B程序,此时LR更新为「2地址」

  2. 跳转到B程序时,B发现还要跳转到C程序,所以LR会被覆盖,所以在B程序开始的时候,会讲LR保存到栈中。

  3. 挑转到C程序时,此时LR更新到「4地址」

  4. C程序执行开始时,发现没有子程序跳转了,所以此时的LR不会被覆盖,所以也不需要将LR保存,退出时直接跳转到「4地址」即可。

  5. B程序执行完时,发现LR还是错的,会将压栈的LR弹出,这样程序就可以回到「2地址」

  6. 如此一来,程序就完成调用过程,全部执行完毕。

2.3.2 接着来说跳转的指令
  • B

    • 用法:B Lable,直接跳转Lable处的地址,不改变LR,有限范围内的跳转,是不返回的跳转。可以看到上图B跳转的地址 就是在附近,说明可能是跳到后面的程序的指令,不带返回的。

    • 图片

  • BL

    • 用法:BL Lable,将LR=PC+4,(比如在32位程序上+4,Thumb是+2,64位程序上可能是+8)然后跳转到Lable地址,带链接的挑战,说明还会回来的。图中0x8000F300 地址不在该程序范围内,说明是跳到其他地址处 执行完成之后,w0是返回值,然后再跳到此次,是带链接的跳转。

    • 图片

  • BX:

    • 用法:BX Lable,跳转到对应Label地址,Lable中最后一位(bit)为指令集标志,1表示Thumb,0表示ARM状态,可能会进行模式切换,是不返回的跳转。

    • 用法:BX reg,跳转到 reg里面保存的地址,同上,可能会切换模式。该程序直接跳到lr所指示的地址,即返回地址。

    • 图片

  • BLX:

    • 用法:BLX Lable,跳转到对应Label地址,可能会切换模式,同时LR保存了返回的地址。

    • 用法:BLX reg,跳转到 reg里面保存的地址,可能会切换模式,同时LR保存了返回的地址。

  • BR:

    • 用法:BR reg,跳转到 reg里面保存的地址,是不返回的跳转。

  • BLR:

    • 用法:BLR reg,跳转到 reg里面保存的地址,同时LR保存了返回的地址。

  • B.

    • 用法:B.Cond label,根据状态位进行跳转,比如 ZCNV 等状态位,

    • 例如:BHI Lable 、BCS Lable

    • 图片

    • b.cs 如果w8 >= 0x397 则跳到0x800c0988地址处。

    • 图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/682822.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入探索Pandas读写XML文件的完整指南与实战read_xml、to_xml【第79篇—读写XML文件】

深入探索Pandas读写XML文件的完整指南与实战read_xml、to_xml XML&#xff08;eXtensible Markup Language&#xff09;是一种常见的数据交换格式&#xff0c;广泛应用于各种应用程序和领域。在数据处理中&#xff0c;Pandas是一个强大的工具&#xff0c;它提供了read_xml和to…

LeetCode.107. 二叉树的层序遍历 II

题目 107. 二叉树的层序遍历 II 分析 这个题目考查的是二叉树的层序遍历&#xff0c;对于二叉树的层序遍历&#xff0c;我们需要借助 队列 这种数据结构。再来回归本题 &#xff0c;我们只需要将 二叉树的层序遍历的结果逆序&#xff0c;就可以得到这道题我们要求的答案了。…

VS Code之Java代码重构和源代码操作

文章目录 支持的代码操作列表调用重构分配变量字段和局部变量的差别Assign statement to new local variable在有参构造函数中将参数指定成一个新的字段 将匿名类转换为嵌套类什么是匿名类&#xff1f;匿名类转换为嵌套类的完整演示 转换为Lambda表达式Lambda 表达式是什么?转…

[缓存] - 1.缓存共性问题

1. 缓存的作用 为什么需要缓存呢&#xff1f;缓存主要解决两个问题&#xff0c;一个是提高应用程序的性能&#xff0c;降低请求响应的延时&#xff1b;一个是提高应用程序的并发性。 1.1 高并发 一般来说&#xff0c; 如果 10Wqps&#xff0c;或者20Wqps &#xff0c;可使用分布…

数据库实验报告

用SQL语句和企业管理器建立如下的表结构并输入数据 给定表结构如下&#xff1a; 创建数据库 创建数据库 create table student(Sno int auto_increment primary key,Sname varchar(45),Ssex varchar(45),Sage int,Sdept varchar(45) )engine InnoDB default charsetutf8; …

Ubuntu下Anaconda+PyCharm搭建PyTorch环境

这里主要介绍在condapytorch都正确安装的前提下&#xff0c;如何通过pycharm建立开发环境&#xff1b; Ubuntu下AnacondaPyCharm搭建PyTorch环境 系统环境&#xff1a;Ubuntu22.04 conda: conda 23.11.0 pycharm:如下 condapytorch的安装教程介绍&#xff0c;请点击这里&…

jmeter-问题四:json断言时,预期结果那里如何不写成固定值?

文章目录 json断言时&#xff0c;预期结果那里如何不写成固定值&#xff1f;定义用户参数&#xff0c;然后在json断言的expected value处引用使用csv数据&#xff0c;然后在json断言的expected value处引用 json断言时&#xff0c;预期结果那里如何不写成固定值&#xff1f; 定…

软件实例分享,茶楼收银软件管理系统,支持计时计费商品销售会员管理定时语音提醒功能

软件实例分享&#xff0c;茶楼收银软件管理系统&#xff0c;支持计时计费商品销售会员管理定时语音提醒功能 一、前言 以下软件教程以 佳易王茶社计时计费管理系统软件V18.0为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 问&#xff1a;这个软…

腾讯云4核8G服务器多少钱?

腾讯云4核8G服务器多少钱&#xff1f;轻量应用服务器4核8G12M带宽一年446元、646元15个月&#xff0c;云服务器CVM标准型S5实例4核8G配置价格15个月1437.3元&#xff0c;5年6490.44元&#xff0c;标准型SA2服务器1444.8元一年&#xff0c;在txy.wiki可以查询详细配置和精准报价…

arkTS开发鸿蒙OS个人商城案例【2024最新 新年限定开发案例QAQ】

龙年前述 源码获取>文章下方二维码&#xff0c;回复关键字“鸿蒙OS商场源码” 前言 arkTS是华为自己研发的一套前端语言&#xff0c;是在js和ts技术的基础上又进行了升级而成&#xff01; 本篇文章会带领大家通过arkTSnode.jsmongoDB来完成一个鸿蒙OS版本的商城案例&…

一起玩儿Proteus仿真(C51)——06. 红绿灯仿真(二)

摘要&#xff1a;本文介绍如何仿真红绿灯 今天来看一下红绿灯仿真程序的具体实现方法。先来看一下整个程序的原理图。 在这个红绿灯仿真实验中&#xff0c;每个路口需要控制的设备是2位数码管显示倒计时以及红黄绿灯的亮灭。先来看一下数码管的连接方法。 数码管的8根LED显示…

大模型Layer normalization知识

Layer Norm 的计算公式 Layer Norm&#xff08;层归一化&#xff09;是一种用于神经网络中的归一化技术&#xff0c;用于提高模型的训练效果和泛化能力。 RMS Norm 的计算公式 RMS Norm 的作用是通过计算输入 X 的均方根&#xff0c;将每个样本的特征进行归一化&#xff0c;使…

AD域国产替代方案,助力某金融企业麒麟信创电脑实现“真替真用”

近期收到不少企业客户反馈采购的信创PC电脑用不起来&#xff0c;影响信创改造的进度。例如&#xff0c;某金融企业积极响应国产化信创替代战略&#xff0c;购置了一批麒麟操作系统电脑。分发使用中发现了如下问题&#xff1a; • 当前麒麟操作系统电脑无法做到统一身份认证&…

【Java】零基础蓝桥杯算法学习——线性动态规划(一维dp)

线性dp——一维动态规划 1、考虑最后一步可以由哪些状态得到&#xff0c;推出转移方程 2、考虑当前状态与哪些参数有关系&#xff0c;定义几维数组来表示当前状态 3、计算时间复杂度&#xff0c;判断是否需要进行优化。 一维动态规划例题&#xff1a;最大上升子序列问题 Java参…

面试技术栈 —— 2024网易雷火暑期实习真题

面试技术栈 —— 2024网易雷火暑期实习真题 1. 最长递增子序列。2. 集中限流和单机限流你觉得哪个好&#xff1f;3. redis部署服务器配置&#xff0c;为什么不用哨兵&#xff1f;4. 讲讲分布式session的原理。5. 数据库&#xff1a;表数据量大了&#xff0c;如何分表&#xff1…

Python 读取pdf文件

Python 实现读取pdf文件简单示例。 安装命令 需要安装操作pdf的三方类库&#xff0c;命令如下&#xff1a; pip install pdfminer3K 安装过程如下&#xff1a; 引入类库 需要引入很多的类库。 示例如下&#xff1a; import sys import importlib importlib.reload(sys)fr…

cordic算法圆周系统计算sin、cos、平方和开根、atan、坐标系变换

cordic算法圆周系统计算sin、cos、平方和开根、atan 一、cordic圆周系统旋转模式和向量模式1.1 旋转模式1.2 向量模式 二、一些需要考虑的事项2.1角度范围2.2输入正负2.3关于迭代精度2.4坐标系旋转 参考文献&#xff1a; 若想计算 s i n sin sin、 c o s cos cos、 x 2 y 2 \s…

【MySQL】索引事务

MySQL索引事务 1. 索引1.1 概念1.2 作用1.3 使用场景1.4 使用1.5 案例 2. 事务2.2 事物的概念2.3 使用 3. 内容重点总结 1. 索引 1.1 概念 索引是一种特殊的文件&#xff0c;包含着对数据表里所有记录的引用指针。可以对表中的一列或多列创建索引&#xff0c; 并指定索引的类…

【leetcode热题100】不同的二叉搜索树

给你一个整数 n &#xff0c;求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种&#xff1f;返回满足题意的二叉搜索树的种数。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;5示例 2&#xff1a; 输入&#xff1a;n 1 输出&#xff1a;1 …

算法学习——LeetCode力扣回溯篇2

算法学习——LeetCode力扣回溯篇2 40. 组合总和 II 40. 组合总和 II - 力扣&#xff08;LeetCode&#xff09; 描述 给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字…