Hive的小文件问题

目录

一、小文件产生的原因

二、小文件的危害

三、小文件的解决方案

3.1 小文件的预防

3.1.1 减少Map数量

 3.1.2 减少Reduce的数量

3.2 已存在的小文件合并

3.2.1 方式一:insert overwrite (推荐)

 3.2.2 方式二:concatenate

 3.2.3 方式三:使用hive的archive归档

3.2.4 方式四:hadoop getmerge

一、小文件产生的原因

  • 数据源本身就包含大量的小文件,例如api,kafka消息管道等。
  • 动态分区插入数据的时候,会产生大量的小文件,从而导致map数量剧增;;
  • reduce 数量越多,小文件也越多,小文件数量=ReduceTask数量*分区数;
  • hive中的小文件是向 hive 表中导入数据时产生;

向 hive 中导入数据的几种方式:

(1)直接向表中插入数据

insert into table t_order2 values (1,'zhangsan',88),(2,'lisi',61);

     这种方式每次插入时都会产生一个小文件,多次插入少量数据就会出现多个小文件,故这种方式生产环境基本不使用;

(2)通过load方式加载数据

-- 导入文件
load data local inpath "/opt/module/hive_data/t_order.txt" overwrite into table t_order;
-- 导入文件夹
load data local inpath "/opt/module/hive_data/t_order" overwrite into table t_order;

     使用 load方式可以导入文件或文件夹,当导入一个文件时,hive表就有一个文件,当导入文件夹时,hive表的文件数量为文件夹下所有文件的数量;

(3)通过查询方式加载数据

insert overwrite t_order  select oid,uid from t_order2

   这种方式是生产环境中经常用的,也是最容易产生小文件的方式。insert 导入数据时会启动MR任务,MR-reduce的个数与输出文件个数一致。

    因此,hdfs的文件数量=  reduceTask数量* 分区数,有些fetch本地抓取任务(例如:简单的 select * from tableA)仅有map阶段,那此时文件个数 = mapTask数量*分区数

二、小文件的危害

        小文件通常是指文件大小要比HDFS块大小(一般是128M)还要小很多的文件。

  • NameNode在内存中维护整个文件系统的元数据镜像、其中每个HDFS文件元数据信息(位置、大小、分块等)对象约占150字节,如果小文件过多会占用大量内存,会直接影响NameNode性能。相对的,HDFS读写小文件也会更加耗时,因为每次都需要从NameNode获取元信息,并与对应的DataNode建立pipeline连接。

  • 从 Hive 角度看,一个小文件会开启一个 MapTask,一个 MapTask开一个 JVM 去执行,这些任务的启动及初始化,会浪费大量的资源,严重影响性能。

三、小文件的解决方案

   小文件的解决思路主要有两个方向:1.小文件的预防;2.已存在的小文件合并

3.1 小文件的预防

     通过调整参数进行合并,在 hive 中执行 insert overwrite  tableA select xx  from tableB 之前设置如下合并参数,即可自动合并小文件。

3.1.1 减少Map数量

  • 设置map输入时的合并参数:
#执行Map前进行小文件合并
#CombineHiveInputFormat底层是 Hadoop的 CombineFileInputFormat 方法
#此方法是在mapper中将多个文件合成一个split切片作为输入
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; -- 默认#每个Map最大的输入大小(这个值决定了合并后文件的数量)
set mapred.max.split.size=256*1000*100;   -- 256M
#一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)
set mapred.min.split.size.per.node=100*100*100;  -- 100M
#一个交换机下split的至少的大小(这个值决定了多个交换机上的文件是否需要合并)
set mapred.min.split.size.per.rack=100*100*100; -- 100M
  • 设置map输出时和reduce输出时的合并参数:
#设置map端输出进行合并,默认为true
set hive.merge.mapfiles = true;
#设置reduce端输出进行合并,默认为false
set hive.merge.mapredfiles = true;
#设置合并文件的大小
set hive.merge.size.per.task = 256*1000*1000;   -- 256M
#当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge
set hive.merge.smallfiles.avgsize=16000000;   -- 16M
  • 启用压缩(小文件合并后,也可以选择启用压缩)
# hive的查询结果输出是否进行压缩
set hive.exec.compress.output=true;
# MapReduce Job的结果输出是否使用压缩
set mapreduce.output.fileoutputformat.compress=true;
#设置压缩方式是snappy
set parquet.compression = snappy;

 3.1.2 减少Reduce的数量

#reduce的个数决定了输出的文件的个数,所以可以调整reduce的个数控制hive表的文件数量,
#通过设置reduce的数量,利用distribute by使得数据均衡的进入每个reduce。
#设置reduce的数量有两种方式,第一种是直接设置reduce个数
set mapreduce.job.reduces=10;#第二种是设置每个reduceTask的大小,Hive会根据数据总大小猜测确定一个reduce个数
set hive.exec.reducers.bytes.per.reducer=512*1000*1000; -- 默认是1G,这里为设置为5G#执行以下语句,将数据均衡的分配到reduce中
set mapreduce.job.reduces=10;insert overwrite table A partition(dt)
select * from B
distribute by  cast(rand()*10 as int);解释:如设置reduce数量为10,则使用cast(rand()*10 as int),生成0-10之间的随机整数,根据【随机整数 % 10】计算分区编号,这样数据就会均衡的分发到各reduce中,防止出现有的文件过大或过小

3.2 已存在的小文件合并

      对集群上已存在的小文件进行定时或实时的合并操作,定时操作可在访问低峰期操作,如凌晨2点,合并操作主要有以下几种方式:

3.2.1 方式一:insert overwrite (推荐)

执行流程总体如下:

(1)创建备份表(创建备份表时需和原表的表结构一致)

create table test.table_hive_back like test.table_hive ;

(2)设置合并文件相关参数,并使用insert overwrite 语句读取原表,再插入备份表

  • 设置合并文件相关参数

       使用 hive的merger合并参数,在正式 insert overwrite 之前做一个合并,合并的时候注意设置好压缩,不然文件会比较大。

  • 合并文件至备份表中,执行前保证没有数据写入原表
#如果有多级分区,将分区名放到partition中
insert overwrite table test.table_hive_back partition(batch_date) 
select * from test.table_hive;

 psinsert overwrite table test.table_hive_back 备份表的时候,可以使用distribute by 命令设置合并后的batch_date分区下的文件数据量

insert overwrite table 目标表 [partition(hour=...)] select * from 目标表 
distribute by cast( rand() * 具体最后落地生成多少个文件数 as int);
  • insert overwrite会重写数据,先进行删除后插入(不用担心如果overwrite失败,数据没了,这里面是有事务保障的);

  • distribute by分区控制数据从map端发往到哪个reduceTask中,distribute by的分区规则:分区字段的hashcode值对reduce 个数取模后, 余数相同的数据会分发到同一个reduceTask中。

  • rand()函数:生成0-1的随机小数,控制最终输出多少个文件。

# 使用distribute by rand()将数据随机分配给reduce,这样可以使得每个reduce处理的数据大体一致。 避免出现有的文件特别大, 有的文件特别小,例如:控制dt分区目录下生成100个文件,那么hsql如下:
insert overwrite table A partition(dt)select * from B
distribute by cast(rand()*100 as int);#cast(rand()*100 as int) 可以生成0-100的随机整数

     如果合并之后的文件竟然还变大了,可能是 select from的原数据是被压缩的,但是insert overwrite目标表的时候,没有设置输出文件压缩功能,解决方案:

# hive的查询结果输出是否进行压缩
set hive.exec.compress.output=true;
# MapReduce Job的结果输出是否使用压缩
set mapreduce.output.fileoutputformat.compress=true;
#设置压缩方式是snappy
set parquet.compression = snappy;

(3)确认表数据一致后,将原表修改名称为临时表tmp,将备份表修改名称为原表

  • 先查看原表和备份表数据量,确保表数据一致
#查看原表和备份表数据量
set hive.compute.query.using.stats=false ;
set hive.fetch.task.conversion=none;
SELECT count(*) FROM test.table_hive;
SELECT count(*) FROM test.table_hive_back ;
  • 将原表修改名称为临时表tmp,将备份表修改名称为原表
alter table test.table_hive rename to test.table_hive_tmp;
alter table test.table_hive_back rename to test.table_hive ;

(4)查看合并后的分区数和小文件数量

    正常情况下:hdfs文件系统上的table_hive表的分区数量没有改变,但是每个分区的几个小文件已经合并为一个文件。

#统计合并后的分区数
[atguigu@bigdata102 ~]$ hdfs dfs -ls /user/hive/warehouse/test/table_hive
#统计合并后的分区数下的文件数
[atguigu@bigdata102 ~]$ hdfs dfs -ls /user/hive/warehouse/test/table_hive/batch_date=20210608

  例如:

(5)观察一段时间后再删除临时表

drop  table test.table_hive_tmp ;

     ps:注意修改hive表名的时候,对应表的存储路径会发生变化,如果有新的任务上传数据到具体路径,需要注意可能需要修改。

 3.2.2 方式二:concatenate

      对于orc文件,可以使用hive自带的 concatenate 命令,自动合并小文件

#对于非分区表
alter table test concatenate;#对于分区表
alter table test [partition(...)] concatenate
#例如:alter table test partition(dt='2021-05-07',hr='12') concatenate;

注意: 

  • concatenate 命令只支持 rcfile和 orc文件类型。 
  • concatenate命令合并小文件时不能指定合并后的文件数量,但可以多次执行该命令。 
  • 当多次使用concatenate后文件数量不变化,这个跟参数 mapreduce.input.fileinputformat.split.minsize=256mb 的设置有关,可设定每个文件的最小size。

 3.2.3 方式三:使用hive的archive归档

    每日定时脚本,对于已经产生小文件的hive表使用har归档,然后已归档的分区不能insert overwrite ,必须先unarchive

#用来控制归档是否可用
set hive.archive.enabled=true;#通知Hive在创建归档时是否可以设置父目录
set hive.archive.har.parentdir.settable=true;#控制需要归档文件的大小
set har.partfile.size=256000000;#对表的某个分区进行归档
alter table test_rownumber2 archive partition(dt='20230324');#对已归档的分区恢复为原文件
alter table test_rownumber2 unarchive partition(dt='20230324');

3.2.4 方式四:hadoop getmerge

  对于txt格式的文件可以使用hadoop getmerge命令来合并小文件。使用 getmerge 命令先合并数据到本地,再通过put命令回传数据到hdfs。

  • 将hdfs上分区为pdate=20220815,文件路径为  /user/hive/warehouse/xxxx.db/xxxx/pdate=20220815/* 下载到linux 本地进行合并文件,本地路径为:/home/hadoop/pdate/20220815

         hadoop fs -getmerge  /user/hive/warehouse/xxxx.db/xxxx/pdate=20220815/*  /home/hadoop/pdate/20220815;

  •  将hdfs源分区数据删除

        hadoop fs -rm  /user/hive/warehouse/xxxx.db/xxxx/pdate=20220815/*

  • 在hdfs上新建分区

      hadoop fs -mkdir -p /user/hive/warehouse/xxxx.db/xxxx/pdate=20220815

  • 将本地合并后的文件回传到hdfs上

         hadoop fs -put  /home/hadoop/pdate/20220815  /user/hive/warehouse/xxxx.db/xxxx/pdate=20220815/*

参考文章:

HIVE中小文件问题_hive小文件产生的原因-CSDN博客

Hive教程(09)- 彻底解决小文件的问题-阿里云开发者社区

0704-5.16.2-如何使用Hive合并小文件-腾讯云开发者社区-腾讯云

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/681487.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全国计算机等级考试二级,MySQL数据库考试大纲(2023年版)

基本要求: 1.掌握数据库的基本概念和方法。 2.熟练掌握MySQL的安装与配置。 3.熟练掌握MySQL平台下使用SQL语言实现数据库的交互操作。 4.熟练掌握 MySQL的数据库编程。 5.熟悉 PHP 应用开发语言,初步具备利用该语言进…

中小学信息学奥赛CSP-J认证 CCF非专业级别软件能力认证-入门组初赛模拟题第二套(选择题)

CSP-J入门组初赛模拟题二 1、在计算机内部用来传送、存贮、加工处理的数册或指令都是以()形式进行的 A、二进制 B、八进制 C、十进制 D、智能拼音 答案:A 考点分析:主要考查小朋友们计算机相关知识,在计算机中都是采用二进制运算&#…

助力工业生产质检,基于轻量级yolov8-seg开发构建工业场景下滚珠丝杠传动表面缺陷分割检测系统

AI赋能工业生产是一个强有力的方式,在我们之前的系列博文中也有很多相应的开发实践,感兴趣的胡都可以自行移步阅读,本文的核心思想就是想要基于轻量级的实例分割模型来开发构建工业场景下的滚珠丝杠传动表面缺陷分割检测系统,首先…

Java+SpringBoot实习管理系统探秘

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

算法-----高精度算法1(高精度加法,高精度减法)(详解)

什么是高精度算法? 高精度的意思就是他得名字----高的精度,简单说就是位数很大,而高精度算法就是将这些高精度数(位数很大在几百几千几万位的数叫高精度数)通过计算机的型式模拟出来结果。 为什么要用高精度算法&…

C语言—字符数组(3)

可能不是那么的完整,先凑合看吧,如果我学会如何修改以后,我慢慢回来修改的 1.编写程序实现对两个字符串的连接功能; 法一:不使用strcat函数,写程序直接实现,记得添加结束符,不然程序访问数组时候将变得不…

【教程】C++语言基础学习笔记(八)——函数

写在前面: 如果文章对你有帮助,记得点赞关注加收藏一波,利于以后需要的时候复习,多谢支持! 【C语言基础学习】系列文章 第一章 《项目与程序结构》 第二章 《数据类型》 第三章 《运算符》 第四章 《流程控制》 第五章…

耳机壳UV树脂制作私模定制耳塞需要哪些工具和材料呢?

制作私模定制耳塞需要使用到一些工具和材料,包括但不限于以下内容: UV树脂:用于制作耳塞的主体部分,具有高硬度、耐磨、耐高温、环保等优点。耳模材料:用于获取用户的耳型,通常是一些快速固化的材料&#…

LeetCode 0987.二叉树的垂序遍历:遍历时存节点信息,遍历完自定义排序

【LetMeFly】987.二叉树的垂序遍历:遍历时存节点信息,遍历完自定义排序 力扣题目链接:https://leetcode.cn/problems/vertical-order-traversal-of-a-binary-tree/ 给你二叉树的根结点 root ,请你设计算法计算二叉树的 垂序遍历…

【C语言】【力扣】7.整数反转和9.回文数

一、整数反转 1.1 个人思考过程 初解:出现ERROR,数据溢出的情况下应该返回0。(错误) int reverse(int x){int y0;while(x!0){yy*10x%10;x/10; }return y; } 再解:加上数据溢出判断条件。(正确&#…

“bound drug/molecule”or “unbound drug/molecule”、molecule shape、sketching是什么?

“bound drug/molecule”or “unbound drug/molecule” For clarity, the following terms will be used throughout this study: “bound drug/molecule” (or “unbound drug/molecule”) refers to the drug/molecule that is bound (or unbound) to proteins [48]. 意思就是…

Java实现快乐贩卖馆管理系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 搞笑视频模块2.3 视频收藏模块2.4 视频评分模块2.5 视频交易模块2.6 视频好友模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 搞笑视频表3.2.2 视频收藏表3.2.3 视频评分表3.2.4 视频交易表 四、系…

【前沿技术杂谈:AI 模型训练成本】到 2030 年,AI 模型训练成本预计将从 1 亿美元增加到 5 亿美元

【前沿技术杂谈:AI 模型训练成本】到 2030 年,AI 模型训练成本预计将从 1 亿美元增加到 5 亿美元 简述五年后,人工智能将掌握在谁的手中? 简述 根据 OpenAI 最近的一份报告,到 2030 年,训练大型 AI 模型的成…

npm报错之package-lock.json found. 问题和淘宝镜像源过期问题

1、package-lock.json found. 问题的解决 在执行yarn add react-transition-group -S 安装react-transition-group时出现package-lock.json found. Your project contains lock files generated by tools other than Yarn. It is advised not to mix package managers in orde…

Mybatis Day02

增删改查 环境准备 创建一个emp表创建一个新的springboot工程,选择mysql、lombok、mybatis依赖application.properties中引入数据库连接信息创建对应的实体类Emp准备Mapper接口EmpMapper,mapper代表程序运行时自动创建接口的代理对象,并放入…

EasyCaptcha,开源图形验证码新标杆!

引言: 随着互联网的普及,验证码已成为网站和应用程序中不可或缺的安全组件。它能够有效地防止自动化攻击、垃圾邮件和机器人活动。在众多验证码解决方案中,Easy-captcha以其简单易用和高度可定制的特点受到了开发者的青睐。本文将指导读者如…

Java 学习和实践笔记(8)

视频解释说,上图不用我们常规的写法,仅仅只是为了在同样的情况下,少写一个a而已!这我目前不能理解。毕竟后面这种对初学者来说,看起来更一目了解。

爬爬爬——今天是浏览器窗口切换和给所选人打钩(自动化)

学习爬虫路还很长,第一阶段花了好多天了,还在底层,虽然不是我专业要学习的语言,和必备的知识,但是我感觉还挺有意思的。加油,这两天把建模和ai也不学了,唉过年了懒了! 加油坚持就是…

LeetCode、1318. 或运算的最小翻转次数【中等,位运算】

文章目录 前言LeetCode、1318. 或运算的最小翻转次数【中等,位运算】题目链接与分类题解位运算 资料获取 前言 博主介绍:✌目前全网粉丝2W,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领…

Linux:信号的处理

文章目录 信号处理 本篇总结的是关于信号的处理 信号处理 在之前有这样的观点:信号在合适的时候被处理好,当进程收到信号后,当前进程可能在做优先级更高的事,所以它来不及处理这个信号,那么就会把这个信号暂时保存起…