助力工业生产质检,基于轻量级yolov8-seg开发构建工业场景下滚珠丝杠传动表面缺陷分割检测系统

AI赋能工业生产是一个强有力的方式,在我们之前的系列博文中也有很多相应的开发实践,感兴趣的胡都可以自行移步阅读,本文的核心思想就是想要基于轻量级的实例分割模型来开发构建工业场景下的滚珠丝杠传动表面缺陷分割检测系统,首先看下实例效果:

简单看下数据集:

YOLOv8官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPbox
50-95
mAPmask
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-seg64036.730.596.11.213.412.6
YOLOv8s-seg64044.636.8155.71.4711.842.6
YOLOv8m-seg64049.940.8317.02.1827.3110.2
YOLOv8l-seg64052.342.6572.42.7946.0220.5
YOLOv8x-seg64053.443.4712.14.0271.8344.1

可以根据自己的需求进行选择使用即可。这里时间的缘故我选择的是YOLOv8下最为轻量级的n系列的模型,模型文件如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment# Parameters
nc: 1   # number of classes
scales: [0.33, 0.25, 1024]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Segment, [nc, 32, 256]]  # Segment(P3, P4, P5)

等待训练完成后我们来看下模型结果详情。

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【训练可视化】

【Batch实例】

【离线推理实例】

mask提取结果如下所示:

点位提取结果如下所示:

{"pitting": [[[435,390,509,465],[[464,399],[462,401],[462,421],[452,430],[452,440],[442,450],[442,462],[445,464],[454,464],[462,457],[464,457],[466,454],[493,454],[500,447],[502,447],[507,442],[507,418],[505,416],[505,411],[498,404],[498,401],[495,399],[493,399],[488,404],[488,406],[486,409],[483,409],[481,406],[481,404],[476,399]]]]
}

感兴趣的话也都可以试试看!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv8n

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/681482.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java+SpringBoot实习管理系统探秘

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

算法-----高精度算法1(高精度加法,高精度减法)(详解)

什么是高精度算法? 高精度的意思就是他得名字----高的精度,简单说就是位数很大,而高精度算法就是将这些高精度数(位数很大在几百几千几万位的数叫高精度数)通过计算机的型式模拟出来结果。 为什么要用高精度算法&…

C语言—字符数组(3)

可能不是那么的完整,先凑合看吧,如果我学会如何修改以后,我慢慢回来修改的 1.编写程序实现对两个字符串的连接功能; 法一:不使用strcat函数,写程序直接实现,记得添加结束符,不然程序访问数组时候将变得不…

【教程】C++语言基础学习笔记(八)——函数

写在前面: 如果文章对你有帮助,记得点赞关注加收藏一波,利于以后需要的时候复习,多谢支持! 【C语言基础学习】系列文章 第一章 《项目与程序结构》 第二章 《数据类型》 第三章 《运算符》 第四章 《流程控制》 第五章…

耳机壳UV树脂制作私模定制耳塞需要哪些工具和材料呢?

制作私模定制耳塞需要使用到一些工具和材料,包括但不限于以下内容: UV树脂:用于制作耳塞的主体部分,具有高硬度、耐磨、耐高温、环保等优点。耳模材料:用于获取用户的耳型,通常是一些快速固化的材料&#…

LeetCode 0987.二叉树的垂序遍历:遍历时存节点信息,遍历完自定义排序

【LetMeFly】987.二叉树的垂序遍历:遍历时存节点信息,遍历完自定义排序 力扣题目链接:https://leetcode.cn/problems/vertical-order-traversal-of-a-binary-tree/ 给你二叉树的根结点 root ,请你设计算法计算二叉树的 垂序遍历…

【C语言】【力扣】7.整数反转和9.回文数

一、整数反转 1.1 个人思考过程 初解:出现ERROR,数据溢出的情况下应该返回0。(错误) int reverse(int x){int y0;while(x!0){yy*10x%10;x/10; }return y; } 再解:加上数据溢出判断条件。(正确&#…

“bound drug/molecule”or “unbound drug/molecule”、molecule shape、sketching是什么?

“bound drug/molecule”or “unbound drug/molecule” For clarity, the following terms will be used throughout this study: “bound drug/molecule” (or “unbound drug/molecule”) refers to the drug/molecule that is bound (or unbound) to proteins [48]. 意思就是…

Java实现快乐贩卖馆管理系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 搞笑视频模块2.3 视频收藏模块2.4 视频评分模块2.5 视频交易模块2.6 视频好友模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 搞笑视频表3.2.2 视频收藏表3.2.3 视频评分表3.2.4 视频交易表 四、系…

【前沿技术杂谈:AI 模型训练成本】到 2030 年,AI 模型训练成本预计将从 1 亿美元增加到 5 亿美元

【前沿技术杂谈:AI 模型训练成本】到 2030 年,AI 模型训练成本预计将从 1 亿美元增加到 5 亿美元 简述五年后,人工智能将掌握在谁的手中? 简述 根据 OpenAI 最近的一份报告,到 2030 年,训练大型 AI 模型的成…

npm报错之package-lock.json found. 问题和淘宝镜像源过期问题

1、package-lock.json found. 问题的解决 在执行yarn add react-transition-group -S 安装react-transition-group时出现package-lock.json found. Your project contains lock files generated by tools other than Yarn. It is advised not to mix package managers in orde…

Mybatis Day02

增删改查 环境准备 创建一个emp表创建一个新的springboot工程,选择mysql、lombok、mybatis依赖application.properties中引入数据库连接信息创建对应的实体类Emp准备Mapper接口EmpMapper,mapper代表程序运行时自动创建接口的代理对象,并放入…

EasyCaptcha,开源图形验证码新标杆!

引言: 随着互联网的普及,验证码已成为网站和应用程序中不可或缺的安全组件。它能够有效地防止自动化攻击、垃圾邮件和机器人活动。在众多验证码解决方案中,Easy-captcha以其简单易用和高度可定制的特点受到了开发者的青睐。本文将指导读者如…

Java 学习和实践笔记(8)

视频解释说,上图不用我们常规的写法,仅仅只是为了在同样的情况下,少写一个a而已!这我目前不能理解。毕竟后面这种对初学者来说,看起来更一目了解。

爬爬爬——今天是浏览器窗口切换和给所选人打钩(自动化)

学习爬虫路还很长,第一阶段花了好多天了,还在底层,虽然不是我专业要学习的语言,和必备的知识,但是我感觉还挺有意思的。加油,这两天把建模和ai也不学了,唉过年了懒了! 加油坚持就是…

LeetCode、1318. 或运算的最小翻转次数【中等,位运算】

文章目录 前言LeetCode、1318. 或运算的最小翻转次数【中等,位运算】题目链接与分类题解位运算 资料获取 前言 博主介绍:✌目前全网粉丝2W,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领…

Linux:信号的处理

文章目录 信号处理 本篇总结的是关于信号的处理 信号处理 在之前有这样的观点:信号在合适的时候被处理好,当进程收到信号后,当前进程可能在做优先级更高的事,所以它来不及处理这个信号,那么就会把这个信号暂时保存起…

从零开始:Linux下的Miniconda安装教程

🚀从零开始:Linux下的Miniconda安装教程🚀 🌵文章目录🌵 🌳引言🌳🌳二、Miniconda简介:开启您的数据科学之旅的得力助手! 🌳🌳三、Lin…

Linux_文件系统

假定外部存储设备为磁盘,文件如果没有被使用,那么它静静躺在磁盘上,如果它被使用,则文件将被加载进内存中。故此,可以将文件分为内存文件和磁盘文件。 内存文件 磁盘文件 软、硬链接 一.内存文件 1.1 c语言的文件接口 …

OpenMVG(EXIF、畸变、仿射特征、特征匹配)

本人之前也研究过OpenMVS但是对于OpenMVG只是原理层次的了解,因此乘着过年期间对这个库进行详细的学习。 目录 1 OpenMVG编译与简单测试 1.1 sfm_data.json获取 1.2 计算特征 2 OpenMVG整个流程的运行测试 3 OpenMVG实战 3.1 SVG绘制 3.2 解析图片的EXIF信息…