机器学习笔记之最优化理论与方法(六)无约束优化问题——最优性条件

机器学习笔记之最优化理论与方法——无约束优化问题[最优性条件]

  • 引言
    • 无约束优化问题
      • 无约束优化问题最优解的定义
    • 无约束优化问题的最优性条件
      • 无约束优化问题的充要条件
      • 无约束优化问题的必要条件
      • 无约束优化问题的充分条件

引言

本节将介绍无约束优化问题,主要介绍无约束优化问题最优解的相关性质

本节是关于以优化算法——无约束算法概述为首,优化算法——线搜索方法(二~九)的理论补充。

无约束优化问题

无约束优化问题的数学符号表示如下:
仅需要对目标函数进行最小化,没有可行域的条件限制。
min ⁡ f ( x ) \min f(x) minf(x)
在实际问题中,很多问题可以被建模成无约束优化问题。例如:线性回归方法中的最小二乘估计问题。对应数学符号表示如下:
很明显,最小二乘函数 ∥ A x − b ∥ 2 2 \|\mathcal A x - b\|_2^2 Axb22明显是一个凸函数:其二次型系数矩阵 A T A \mathcal A^T\mathcal A ATA必然是半正定矩阵
f ( x ) = ∥ A x − b ∥ 2 2 = ( A x − b ) T ( A x − b ) = x T [ A T A ] x + b T A x − x T A T b + b T b \begin{aligned} f(x) & = \|\mathcal Ax - b\|_2^2 \\ & = (\mathcal Ax - b)^T(\mathcal Ax - b) \\ & = x^T [\mathcal A^T\mathcal A] x + b^T \mathcal A x - x^T \mathcal A^T b + b^Tb \end{aligned} f(x)=Axb22=(Axb)T(Axb)=xT[ATA]x+bTAxxTATb+bTb
因而该问题可以更精确地描述为无约束凸优化问题
min ⁡ ∥ A x − b ∥ 2 2 \min \|\mathcal A x - b\|_2^2 minAxb22

可以采用适当方法约束优化问题转换为无约束优化问题。例如最优化问题概述中提到的罚函数法。

无约束优化问题最优解的定义

  • 局部最优解 :假设 x ˉ \bar{x} xˉ是关于目标函数 f ( ⋅ ) f(\cdot) f()无约束优化问题的局部最优解,对于 ∀ x ∈ N ϵ ( x ˉ ) \forall x \in \mathcal N_\epsilon(\bar{x}) xNϵ(xˉ),必然有:
    其中 N ϵ ( x ˉ ) \mathcal N_{\epsilon}(\bar{x}) Nϵ(xˉ)表示包含点 x ˉ \bar{x} xˉ,并且使用 ϵ \epsilon ϵ表示范围的邻域。例如: ( x ˉ − ϵ , x ˉ + ϵ ) (\bar{x} - \epsilon,\bar{x} + \epsilon) (xˉϵ,xˉ+ϵ)
    f ( x ) ≥ f ( x ˉ ) f(x) \geq f(\bar{x}) f(x)f(xˉ)
  • 全局最优解:相比于局部最优解,假设 x ∗ x^* x是关于目标函数 f ( ⋅ ) f(\cdot) f()无约束优化问题的全局最优解,对于 ∀ x ∈ R n \forall x \in \mathbb R^n xRn,必然有:
    f ( x ) ≥ f ( x ∗ ) f(x) \geq f(x^*) f(x)f(x)
  • 严格最优解:与凸函数:定义与基本性质中提到的严格凸函数类似,其核心是消除掉取等的情况。关于严格最优解,同样可以分为严格局部最优解严格全局最优解。对应数学符号表示如下:
    { ∀ x ∈ R n , x ≠ x ∗ ⇒ f ( x ) > f ( x ∗ ) ∀ x ∈ N ϵ ( x ˉ ) , x ≠ x ˉ ⇒ f ( x ) > f ( x ˉ ) \begin{cases} \forall x \in \mathbb R^n,x \neq x^* \Rightarrow f(x) > f(x^*) \\ \forall x \in \mathcal N_{\epsilon}(\bar{x}), x \neq \bar{x} \Rightarrow f(x) > f(\bar{x}) \end{cases} {xRn,x=xf(x)>f(x)xNϵ(xˉ),x=xˉf(x)>f(xˉ)
    对应图像表示如下:
    最优解与严格最优解
    根据凸函数的定义可以看出, f ( ⋅ ) , G ( ⋅ ) f(\cdot),\mathcal G(\cdot) f(),G()都是凸函数。其中 f ( ⋅ ) f(\cdot) f()中描述的红色点是严格最优解;而红色点 G ( x ∗ ) \mathcal G(x^*) G(x)是最优解的条件下, ∃ x ≠ x ∗ ⇒ f ( x ) = f ( x ∗ ) \exist x \neq x^* \Rightarrow f(x) = f(x^*) x=xf(x)=f(x)。那么该函数的最优解不是严格最优解

无约束优化问题的最优性条件

针对无约束优化问题 ⇒ min ⁡ f ( x ) \Rightarrow \min f(x) minf(x)

无约束优化问题的充要条件

如果目标函数 f ( x ) f(x) f(x)凸函数,则存在如下等价条件
关于无约束凸优化问题,详细解释见最优化理论与方法——凸优化问题(上),这里不再赘述。
x ∗ is Optimal  ⇔ ∇ f ( x ∗ ) = 0 x^* \text{ is Optimal } \Leftrightarrow \nabla f(x^*) = 0 x is Optimal f(x)=0

无约束优化问题的必要条件

如果目标函数 f ( x ) f(x) f(x)不是凸函数,只是一般函数,上述的充要条件不一定成立,但一定满足如下必要条件

  • 如果 x ∗ x^* x是最优解,那么它一定是平稳点
  • 如果 f ( ⋅ ) f(\cdot) f() x ∗ x^* x位置的 Hessian Matrix ⇒ ∇ 2 f ( x ∗ ) \text{Hessian Matrix} \Rightarrow \nabla^2 f(x^*) Hessian Matrix2f(x)存在,那么该矩阵至少是半正定矩阵如果将 f ( ⋅ ) f(\cdot) f()退化成一元函数,必然有: f ′ ′ ( x ∗ ) ≥ 0 f''(x^*) \geq 0 f′′(x)0
    x ∗ is Optimal  ⇒ { ∇ f ( x ∗ ) = 0 ∇ 2 f ( x ∗ ) ≽ 0 x^* \text{ is Optimal } \Rightarrow \begin{cases} \nabla f(x^*) = 0 \\ \nabla^2 f(x^*) \succcurlyeq 0 \end{cases} x is Optimal {f(x)=02f(x)0

证明

  • 已知 x ∗ x^* x最优解不妨设 ∇ f ( x ∗ ) ≠ 0 \nabla f(x^*) \neq 0 f(x)=0,必然存在负梯度方向: d = − ∇ f ( x ∗ ) d = - \nabla f(x^*) d=f(x)
    x ∗ x^* x起始点,沿着负梯度方向前进较小的一段距离: f ( x ∗ + λ ⋅ d ) f(x^* + \lambda \cdot d) f(x+λd),并将其进行泰勒展开
    思路:前进一小段距离后,必然会导致目标函数值下降;从而 x ∗ x^* x不是最优解了,产生矛盾。
    f ( x ∗ + λ ⋅ d ) = f ( x ∗ ) + 1 1 ! λ [ ∇ f ( x ∗ ) ] T d + O ( λ ∥ d ∥ ) λ ∈ ( 0 , 1 ) f(x^* + \lambda \cdot d) = f(x^*) + \frac{1}{1!} \lambda [\nabla f(x^*)]^Td + \mathcal O(\lambda \|d\|) \quad \lambda \in (0,1) f(x+λd)=f(x)+1!1λ[f(x)]Td+O(λd)λ(0,1)
    经过整理,有:
    关于 λ \lambda λ范围后面不再赘述。
    f ( x ∗ + λ ⋅ d ) − f ( x ∗ ) λ = [ ∇ f ( x ∗ ) ] T d + O ( λ ∥ d ∥ ) λ \frac{f(x^* + \lambda \cdot d) - f(x^*)}{\lambda} = [\nabla f(x^*)]^T d + \frac{\mathcal O(\lambda \|d\|)}{\lambda} λf(x+λd)f(x)=[f(x)]Td+λO(λd)
    d = − ∇ f ( x ∗ ) d = -\nabla f(x^*) d=f(x)代入,必然有:
    [ ∇ f ( x ∗ ) ] T d = − ∣ ∣ ∇ f ( x ∗ ) ∣ ∣ 2 < 0 [\nabla f(x^*)]^T d = - ||\nabla f(x^*)||^2 < 0 [f(x)]Td=∣∣∇f(x)2<0
    λ ⇒ 0 \lambda \Rightarrow 0 λ0时,有:
    lim ⁡ λ ⇒ 0 f ( x ∗ + λ ⋅ d ) − f ( x ∗ ) λ = lim ⁡ λ ⇒ 0 { [ ∇ f ( x ∗ ) ] T d ⏟ < 0 + O ( λ ⋅ ∥ d ∥ ) λ ⏟ = 0 } < 0 \mathop{\lim}\limits_{\lambda \Rightarrow 0} \frac{f(x^* + \lambda \cdot d) - f(x^*)}{\lambda} = \mathop{\lim}\limits_{\lambda \Rightarrow 0} \left\{\underbrace{[\nabla f(x^*)]^T d}_{< 0} + \underbrace{\frac{\mathcal O(\lambda \cdot \|d\|)}{\lambda}}_{=0}\right\} < 0 λ0limλf(x+λd)f(x)=λ0lim <0 [f(x)]Td+=0 λO(λd) <0
    从而:
    lim ⁡ λ ⇒ 0 f ( x ∗ + λ ⋅ d ) − f ( x ∗ ) λ < 0 ⇒ lim ⁡ λ ⇒ 0 f ( x ∗ + λ ⋅ d ) < f ( x ∗ ) \mathop{\lim}\limits_{\lambda \Rightarrow 0} \frac{f(x^* + \lambda \cdot d) - f(x^*)}{\lambda} < 0 \Rightarrow \mathop{\lim}\limits_{\lambda \Rightarrow 0} f(x^* + \lambda \cdot d) < f(x^*) λ0limλf(x+λd)f(x)<0λ0limf(x+λd)<f(x)
    此时,发现了存在比 f ( x ∗ ) f(x^*) f(x)还要小的函数值 f ( x ∗ + λ ⋅ d ) f(x^* + \lambda \cdot d) f(x+λd),这意味着: x ∗ x^* x不是最优解。与条件矛盾,得证。也将 ∇ f ( x ∗ ) = 0 \nabla f(x^*) = 0 f(x)=0称作一般函数 f ( ⋅ ) f(\cdot) f() x ∗ x^* x是最优解的一阶必要条件
  • 二阶必要条件证明:已知 x ∗ x^* x是最优解,必然有: ∇ f ( x ∗ ) = 0 \nabla f(x^*) = 0 f(x)=0。假设 x ∗ x^* x位置的 Hessian Matrix ⇒ ∇ 2 f ( x ∗ ) \text{Hessian Matrix} \Rightarrow \nabla^2 f(x^*) Hessian Matrix2f(x)低于半正定矩阵,必然有:
    ∃ d ≠ 0 ⇒ d T ∇ 2 f ( x ∗ ) d < 0 \exist d \neq 0 \Rightarrow d^T \nabla^2 f(x^*) d < 0 d=0dT2f(x)d<0
    x ∗ x^* x起始点 d d d下降方向前进较小的一段距离: f ( x ∗ + λ ⋅ d ) f(x^* + \lambda \cdot d) f(x+λd),并将其进行泰勒展开
    与平稳点的证明相似,只不过需要二阶泰勒展开~
    f ( x ∗ + λ ⋅ d ) = f ( x ∗ ) + 1 1 ! λ ⋅ [ ∇ f ( x ∗ ) ] T ⏟ = 0 d + 1 2 ! λ ⋅ d T ∇ 2 f ( x ∗ ) d + O ( λ 2 ⋅ ∥ d ∥ 2 ) = f ( x ∗ ) + 1 2 ! λ ⋅ d T ∇ 2 f ( x ∗ ) d + O ( λ 2 ⋅ ∥ d ∥ 2 ) \begin{aligned} f(x^* + \lambda \cdot d) & = f(x^*) + \frac{1}{1!} \lambda \cdot \underbrace{[\nabla f(x^*)]^T}_{=0}d + \frac{1}{2!} \lambda \cdot d^T \nabla^2 f(x^*) d + \mathcal O(\lambda^2 \cdot \|d\|^2) \\ & = f(x^*) + \frac{1}{2!} \lambda \cdot d^T \nabla^2 f(x^*) d + \mathcal O(\lambda^2 \cdot \|d\|^2) \end{aligned} f(x+λd)=f(x)+1!1λ=0 [f(x)]Td+2!1λdT2f(x)d+O(λ2d2)=f(x)+2!1λdT2f(x)d+O(λ2d2)
    经过整理,并令 λ ⇒ 0 \lambda \Rightarrow 0 λ0,有:
    lim ⁡ λ ⇒ 0 f ( x ∗ + λ ⋅ d ) − f ( x ∗ ) λ 2 = 1 2 d T ∇ 2 f ( x ∗ ) d ⏟ < 0 + O ( λ 2 ⋅ ∥ d ∥ 2 ) λ 2 ⏟ = 0 < 0 \mathop{\lim}\limits_{\lambda \Rightarrow 0} \frac{f(x^* + \lambda \cdot d) - f(x^*)}{\lambda^2} = \frac{1}{2}\underbrace{d^T \nabla^2 f(x^*) d}_{<0} + \underbrace{\frac{\mathcal O(\lambda^2 \cdot \|d\|^2)}{\lambda^2}}_{=0} < 0 λ0limλ2f(x+λd)f(x)=21<0 dT2f(x)d+=0 λ2O(λ2d2)<0
    从而 f ( x ∗ + λ ⋅ d ) < f ( x ∗ ) f(x^* + \lambda \cdot d) < f(x^*) f(x+λd)<f(x),从而与条件矛盾。因此:最优解 x ∗ x^* x对应的 ∇ 2 f ( x ∗ ) ≽ 0 \nabla^2 f(x^*) \succcurlyeq 0 2f(x)0恒成立。

相反,如果存在某点 x ∗ x^* x,使得: ∇ f ( x ∗ ) = 0 \nabla f(x^*) = 0 f(x)=0 ∇ 2 f ( x ∗ ) ≽ 0 \nabla^2 f(x^*) \succcurlyeq 0 2f(x)0,那么点 x ∗ x^* x是否为最优解 ? ? ?不一定。例如: f ( x ) = x 3 f(x) = x^3 f(x)=x3,其函数图像表示如下:
x立方函数图像
x = 0 x = 0 x=0处的梯度 ∇ f ( x ) ∣ x = 0 = 0 \nabla f(x)|_{x=0} = 0 f(x)x=0=0二阶梯度 ∇ 2 f ( x ) ∣ x = 0 = 0 \nabla^2 f(x) |_{x = 0} = 0 2f(x)x=0=0,均满足条件;但该点是一个鞍点,而不是最优解点。

无约束优化问题的充分条件

如果 f ( ⋅ ) f(\cdot) f()不是凸函数,只是一般函数,如果存在某点 x ∗ x^* x,满足: ∇ f ( x ∗ ) = 0 , ∇ 2 f ( x ∗ ) ≻ 0 \nabla f(x^*) =0,\nabla^2 f(x^*) \succ 0 f(x)=0,2f(x)0,那么 x ∗ x^* x严格最优解

  • 其中 ∇ 2 f ( x ∗ ) ≻ 0 \nabla^2 f(x^*) \succ 0 2f(x)0表示函数 f ( ⋅ ) f(\cdot) f() x ∗ x^* x点处的 Hessian Matrix \text{Hessian Matrix} Hessian Matrix正定矩阵
  • 需要注意的是,这里的严格最优解可能是严格局部最优解或者严格全局最优解

证明
要证上式,即证: ∀ x ∈ N ϵ ( x ∗ ) , f ( x ∗ ) < f ( x ) \forall x \in \mathcal N_{\epsilon}(x^*),f(x^*) < f(x) xNϵ(x),f(x)<f(x)

  • x ∗ x^* x起始点,朝着任意方向 d d d前进较小的距离,得到新的函数结果: f ( x ∗ + λ ⋅ d ) f(x^* + \lambda \cdot d) f(x+λd)。观察: f ( x ∗ + λ ⋅ d ) f(x^* + \lambda \cdot d) f(x+λd) f ( x ∗ ) f(x^*) f(x)之间的大小情况。使用泰勒公式展开
    为了简单起见,仅关注 d d d的方向,而令 d d d大小 ∥ d ∥ = 1 \|d\| = 1 d=1
    f ( x ∗ + λ ⋅ d ) = f ( x ∗ ) + 1 1 ! λ ⋅ [ ∇ f ( x ∗ ) ] T ⏟ = 0 d + 1 2 ! λ 2 d T ∇ 2 f ( x ∗ ) ⏟ ≻ 0 d + O ( λ 2 ) ∥ d ∥ 2 = 1 f(x^* + \lambda \cdot d) = f(x^*) + \frac{1}{1!} \lambda \cdot\underbrace{[\nabla f(x^*)]^T}_{=0} d + \frac{1}{2!} \lambda^2 d^T \underbrace{\nabla^2 f(x^*)}_{\succ 0}d + \mathcal O(\lambda^2) \quad \|d\|^2 = 1 f(x+λd)=f(x)+1!1λ=0 [f(x)]Td+2!1λ2dT0 2f(x)d+O(λ2)d2=1
    整理上式,观察 f ( x ∗ + λ ⋅ d ) − f ( x ∗ ) f(x^* + \lambda \cdot d) - f(x^*) f(x+λd)f(x)结果:
    lim ⁡ λ ⇒ 0 f ( x ∗ + λ ⋅ d ) − f ( x ∗ ) λ 2 = 1 2 d T ∇ 2 f ( x ∗ ) d > 0 \mathop{\lim}\limits_{\lambda \Rightarrow 0} \frac{f(x^* + \lambda \cdot d) - f(x^*)}{\lambda^2} = \frac{1}{2}d^T \nabla^2 f(x^*) d > 0 λ0limλ2f(x+λd)f(x)=21dT2f(x)d>0
    从而 f ( x ∗ + λ ⋅ d ) > f ( x ∗ ) f(x^* + \lambda \cdot d) > f(x^*) f(x+λd)>f(x)。这意味着: x ∗ x^* x范围的小的邻域内, f ( x ∗ ) f(x^*) f(x)是最小值,并且是严格最小值,得证。

Reference \text{Reference} Reference
最优化理论与方法-第五讲-无约束优化问题(一)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/67799.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

css让元素保持等比例宽高

使用新属性 aspect-ratio: 16/9; 代码示例 <style>div {width: 60%;/* 等比例宽高 */aspect-ratio: 16/9;background-color: red;margin: auto;}</style> </head><body><div></div> </body>示例 aspect-ratio兼容性

python-wordcloud词云

导入模块 from wordcloud import WordCloud import jieba import imageio import matplotlib.pyplot as plt from PIL import ImageGrab import numpy as npwordcloud以空格为分隔符号&#xff0c;来将文本分隔成单词 PIL pillow模块 img imageio.imread(image.png)这行代码…

软件测试—测试用例的设计

软件测试—测试用例的设计 测试用例是什么&#xff1f; 首先&#xff0c;测试用例&#xff08;Test Case&#xff09;是为了实施测试而向被测试系统提供的一组集合。这组集合包括&#xff1a;测试环境、操作步骤、测试数据、预期结果等要素。 好的测试用例的特征 一个好的测试…

MySQL表的内连和外连

文章目录 MySQL表的内连和外连1. 内连接(1) 显示SMITH的名字和部门名称 2. 外连接2.1 左外连接(1) 查询所有学生的成绩&#xff0c;如果这个学生没有成绩&#xff0c;也要将学生的个人信息显示出来 2.2 右外连接(1) 对stu表和exam表联合查询&#xff0c;把所有的成绩都显示出来…

软件设计师学习笔记8-操作系统+进程

目录 1.操作系统 1.1操作系统层次图 1.2操作系统的作用 1.3操作系统的任务 2.特殊的操作系统 3.进程 3.1进程的概念 3.2进程与程序 3.3进程与线程 3.4进程的状态 3.4.1三态模型 3.4.2基于三态模型的五态模型 1.操作系统 1.1操作系统层次图 该图片来自希赛软考 1.…

zookeeper教程

zookeeper教程 zookeeper简介zookeeper的特点及数据模型zookeeper下载安装zookeeper客户端命令zookeeper配置文件zookeeper服务器常用命令zookeeper可视化管理工具zkuizookeeper集群环境搭建zookeeper选举机制使用Java原生api操作zookeeper使用java zkclient库操作zookeeper使用…

【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_SPEED_OPTIMIZER

文章目录 前言PIECEWISE_JERK_SPEED_OPTIMIZER功能简介PIECEWISE_JERK_SPEED_OPTIMIZER相关配置PIECEWISE_JERK_SPEED_OPTIMIZER流程QP问题的标准类型定义&#xff1a;优化变量设计目标函数约束条件相关矩阵二次项系数矩阵 H H H一次项系数向量 q q q设定OSQP求解参数 Process设…

MybatisPlus 核心功能 条件构造器 自定义SQL Service接口 静态工具

MybatisPlus 快速入门 常见注解 配置_软工菜鸡的博客-CSDN博客 2.核心功能 刚才的案例中都是以id为条件的简单CRUD&#xff0c;一些复杂条件的SQL语句就要用到一些更高级的功能了。 2.1.条件构造器 除了新增以外&#xff0c;修改、删除、查询的SQL语句都需要指定where条件。因此…

深入理解联邦学习——联邦学习的定义

分类目录&#xff1a;《深入理解联邦学习》总目录 假设有两个不同的企业 A A A和 B B B&#xff0c;它们拥有不同的数据。比如&#xff0c;企业 A A A有用户特征数据&#xff0c;而企业 B B B有产品特征数据和标注数据。这两个企业按照GDPR准则是不能粗暴地把双方数据加以合并的…

孙哥Spring源码第17集

第17集 refresh()-invokeBeanFactoryPostProcessor -一-invokeBeanFactoryPostProcessor的分析过程 【视频来源于&#xff1a;B站up主孙帅suns Spring源码视频】 1、什么是解析顶级注解&#xff1f; PropertySource CompeontScan Configuration Component ImportResour…

垃圾回收 - 复制算法

GC复制算法是Marvin L.Minsky在1963年研究出来的算法。说简单点&#xff0c;就是只把某个空间的活动对象复制到其它空间&#xff0c;把原空间里的所有对象都回收掉。这是一个大胆的想法。在此&#xff0c;我们将复制活动对象的原空间称为From空间&#xff0c;将粘贴活动对象的新…

VSCode 配置 C 语言编程环境

目录 一、下载 mingw64 二、配置环境变量 三、三个配置文件 四、格式化代码 1、安装插件 2、保存时自动格式化 3、左 { 不换行 上了两年大学&#xff0c;都还没花心思去搭建 C 语言编程环境&#xff0c;惭愧&#xff0c;惭愧。 一、下载 mingw64 mingw64 是著名的 C/C…

SpringBoot整合WebSocket

流程分析 Websocket客户端与Websocket服务器端 前端浏览器和后端服务器的连接通信 HTTP与Websocket对比 服务器端编码 1.引入pom依赖 <!--webSocket--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-sta…

【内网穿透】使用Nodejs搭建简单的HTTP服务器 ,并实现公网远程访问

目录 前言 1.安装Node.js环境 2.创建node.js服务 3. 访问node.js 服务 4.内网穿透 4.1 安装配置cpolar内网穿透 4.2 创建隧道映射本地端口 5.固定公网地址 前言 Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台运行环境。Node.js 由 OpenJS Foundation…

mysql(九)mysql主从复制

目录 前言概述提出问题主从复制的用途工作流程 主从复制的配置创建复制账号配置主库和从库启动主从复制从另一个服务器开始主从复制主从复制时推荐的配置sync_binloginnodb_flush_logs_at_trx_commitinnodb_support_xa1innodb_safe_binlog 主从复制的原理基于语句复制优点&…

视频监控/视频汇聚/视频云存储EasyCVR平台接入国标GB协议后出现断流情况,该如何解决?

视频监控汇聚平台EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。安防监控平台EasyCVR既具备传统安防视频监控的能…

LeetCode 热题 100——无重复字符的最长子串(滑动窗口)

题目链接 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 题目解析 从s字符串中&#xff0c;去找出连续的子串&#xff0c;使该子串中没有重复字符&#xff0c;返回它的最长长度。 暴力枚举 依次以第一个、第二个、第三个等等为起点去遍历字符串&a…

华为数通方向HCIP-DataCom H12-821题库(单选题:261-280)

第261题 以下关于IPv6过渡技术的描述,正确的是哪些项? A、转换技术的原理是将IPv6的头部改写成IPv4的头部,或者将IPv4的头部改写成IPv6的头部 B、使用隧道技术,能够将IPv4封装在IPv6隧道中实现互通,但是隧道的端点需要支持双栈技术 C、转换技术适用于纯IPv4网络与纯IPv…

SegNeXt学习记录(一):配置环境 测试代码

安装配置MMSegmentation环境 为了验证 MMSegmentation 和所需的环境是否安装正确&#xff0c;我们可以运行示例 python 代码来初始化分段器并推断演示图像&#xff1a; from mmseg.apis import inference_segmentor, init_segmentor import mmcvconfig_file configs/pspnet/…

能力和结果之间的关系

大家好,这里是大话硬件。 今天这篇文章想和大家分享前段时间的一点工作体会,关于个人能力和工作结果之间的关系。 其实这些感悟是在上周三晚上下班,走在回家的路上,脑海中突然出现这样的体会,回到家里立马写了下来。因为是即时的灵感,完全是因为工作状态触发,立刻写下…