数学建模-灰色预测最强讲义 GM(1,1)原理及Python实现

目录

一、GM(1,1)模型预测原理

二、GM(1,1)模型预测步骤

2.1 数据的检验与处理

2.2 建立模型

2.3 检验预测值

三、案例 


灰色预测应用场景:时间序列预测

灰色预测的主要特点是模型使用的不是原始数据序列,而是生成的数据序列。其核心体系是灰色模型,即对原始数据做累加生成得到近似的指数规律再进行建模的方法。

优点是不需要很多的数据,一般只需要4个数据就可以,能解决历史数据少、序列的完整性及可靠性低的问题;能利用微分方程来充分挖掘系统的本质,精度高;能将无规律的原始数据进行生成得到规律性较强的生成序列,运算简便,易于检验,具有不考虑分布规律,不考虑变化趋势。

缺点是只适用于中短期的预测,只适合指数增长的预测。

一、GM11)模型预测原理

二、GM11)模型预测步骤

2.1 数据的检验与处理

2.2 建立模型

2.3 检验预测值

三、案例 

由北方某城市1986-1992年道路交通噪声平均值声级数据如表,进行未来10年的预测。

解:

级比检验

首先导入数据,做级比检验

import pandas as pd
import numpy as np
data = pd.read_excel(r"C:\Users\Terry\Desktop\城市交通噪声数据.xlsx")
x_0 = np.array(data["噪声分贝"].to_list()) # [1,2,3] ndarray
x_0
# 级比检验
def level_ratio_test(x):# 可容覆盖范围n = len(x)cover_range = [np.exp(-2/(n+1)), np.exp(2/(n+1))]# 计算x[i]/x[i+1]的值,即计算级比lambda_x = x[:-1] / x[1:]for i in lambda_x:if i < cover_range[0] or i > cover_range[1]:print("不通过级比检验,无法使用GM(1,1)")breakreturnprint("通过级比检验,可以使用GM(1,1)")level_ratio_test(x_0)

注:这里直接写了一个函数,计算量可容覆盖范围,循环判断是每个数的级比是否满足要求,如果不满足,跳出循环,并输出无法使用GM(1,1),如果循环结束,仍然没有输出无法使用,则标明所有级比均通过检验可以输出“通过级比检验,可以使用GM(1,1)”

建模及预测

# 1.计算一次累加生成序列z_1
x_1 = x_0.cumsum()# 2.计算均值生成序列z_1
z_1 = (x_1[:-1] + x_1[1:]) / 2.0# 3.计算B矩阵
B = np.vstack([-z_1, np.ones(len(x_0)-1)]).T# 4.计算Y矩阵
Y = x_0[1:].reshape((-1, 1))# 5.计算a,b
# a为发展系数 b为灰色作用量
[[a], [b]] = np.linalg.inv(B.T @ B) @ B.T @ Y  # 计算参数# 6.原始年份的预测值
x_1_predict = []
n = len(x_0)
for k in range(n): # 如果预测k个未来年份 这里就n+k 假设预测未来5年就n+5x_1_predict.append((x_0[0]-b/a)*np.exp(-a*k) + b/a) # 7.还原数据
x_0_predict = np.hstack([x_0[0],np.diff(x_1_predict)])

结果检验

import pandas as pd
result = pd.DataFrame({"原始数据":x_0,"预测数据":x_0_predict})
# 残差:真实值 - 预测值
result["残差"] = result["原始数据"] - result["预测数据"]
# 相对误差
result["相对误差"] = (abs(result["原始数据"] - result["预测数据"]) /  result["原始数据"]).map('{:.2%}'.format)
# 级比偏差
lambda_x = x_0[:-1] / x_0[1:]
result["级比偏差值"] = np.append(np.nan, abs(1-(1-0.5*a)/(1+0.5*a)*lambda_x))
result

相对误差、级别偏差均小于0.1,达到较高要求。

结果描述及未来预测

通过绘制折线图来看真实值和预测值的比较

result = result.set_index(data.年份)
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#  输出高清图像
%config InlineBackend.figure_format = 'retina'
%matplotlib inline#设定 seaborn 风格
sns.set()
with plt.xkcd():#用 matplotlib 画出每个序列的折线plt.figure(figsize=(10,6)) plt.plot(result['原始数据'], label='Original data',marker='o',color='g')plt.plot(result['预测数据'], label='Predicted data',marker='X',color='r')# 设定图例和标题plt.legend()plt.title('Comparison of Original Data and Predicted Data')# 设置坐标轴范围plt.ylim(60, 85)# 显示图表plt.show()

# 假设预测10年
x_1_predict = []
for k in range(n+10): # 如果预测k个未来年份 这里就n+k 假设预测未来5年就n+5x_1_predict.append((x_0[0]-b/a)*np.exp(-a*k) + b/a) # 递推计算 第k+1个数 比如k=0的时候 就是第一个预测值 
x_1_predict
# 7.还原数据
x_0_predict = np.hstack([x_0[0],np.diff(x_1_predict)])
x_0_predictyear = data["年份"].tolist()
for i in range(10):year.append(year[-1]+1)
x_0_predict_more = pd.DataFrame({"未来预测":x_0_predict,"年份":year})
x_0_predict_more = x_0_predict_more.set_index("年份")
x_0_predict_more.iloc[0:n-1,:] = np.nanwith plt.xkcd():#用 matplotlib 画出每个序列的折线plt.figure(figsize=(10,6)) plt.plot(result['原始数据'], label='Original data',marker='o',color='g')plt.plot(result['预测数据'], label='Predicted data',marker='X',color='r')plt.plot(x_0_predict_more['未来预测'], label='Predicted Future data',marker='1',color='b',linestyle='--')# 设定图例和标题plt.legend()plt.title('Comparison of Original Data and Predicted Data')# 设置坐标轴范围plt.ylim(60, 80)# 显示图表plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/675316.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于OpenCV灰度图像转GCode的斜向扫描实现

基于OpenCV灰度图像转GCode的斜向扫描实现基于OpenCV灰度图像转GCode的斜向扫描实现 引言激光雕刻简介OpenCV简介实现步骤 1.导入必要的库2. 读取灰度图像3. 图像预处理4. 生成GCode5. 保存生成的GCode6. 灰度图像斜向扫描代码示例 总结 系列文章 ⭐深入理解G0和G1指令&…

Python 深入理解 os 和 sys 模块

Python 深入理解 os 和 sys 模块 OS 介绍代码智能连接&#xff08;拼接&#xff09;路径创建目录展示&#xff08;列出目录&#xff09;删除文件重命名文件或目录 sys 介绍代码命令行参数处理 (sys.argv)标准输入输出重定向 (sys.stdin, sys.stdout, sys.stderr)&#xff1a;解…

数据结构 - 线索树

一、 为什么要用到线索二叉树&#xff1f; 我们先来看看普通的二叉树有什么缺点。下面是一个普通二叉树&#xff08;链式存储方式&#xff09;&#xff1a; 乍一看&#xff0c;会不会有一种违和感&#xff1f;整个结构一共有 7 个结点&#xff0c;总共 14 个指针域&#xff0c…

WordPress函数wptexturize的介绍及用法示例,字符串替换为HTML实体

在查看WordPress你好多莉插件时发现代码中使用了wptexturize()函数用来随机输出一句歌词&#xff0c;下面boke112百科就跟大家一起来学习一下WordPress函数wptexturize的介绍及用法示例。 WordPress函数wptexturize介绍 wptexturize( string $text, bool $reset false ): st…

HarmonyOS class类对象基础使用

按我们之前的写法 就是 Entry Component struct Dom {p:Object {name: "小猫猫",age: 21,gf: {name: "小小猫猫",age: 18,}}build() {Row() {Column() {// ts-ignoreText(this.p.gf.name)}.width(100%)}.height(100%)} }直接用 Object 一层一层往里套 这…

C++进阶(十三)异常

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、C语言传统的处理错误的方式二、C异常概念三、异常的使用1、异常的抛出和捕获2、异常的重新…

网络学习:数据链路层VLAN原理和配置

一、简介&#xff1a; VLAN又称为虚拟局域网&#xff0c;它是用来将使用路由器的网络分割成多个虚拟局域网&#xff0c;起到隔离广播域的作用&#xff0c;一个VLAN通常对应一个IP网段&#xff0c;不同VLAN通常规划到不同IP网段。划分VLAN可以提高网络的通讯质量和安全性。 二、…

跟着小德学C++之TCP基础

嗨&#xff0c;大家好&#xff0c;我是出生在达纳苏斯的一名德鲁伊&#xff0c;我是要立志成为海贼王&#xff0c;啊不&#xff0c;是立志成为科学家的德鲁伊。最近&#xff0c;我发现我们所处的世界是一个虚拟的世界&#xff0c;并由此开始&#xff0c;我展开了对我们这个世界…

红队打靶练习:GLASGOW SMILE: 1.1

目录 信息收集 1、arp 2、nmap 3、nikto 4、whatweb 目录探测 1、gobuster 2、dirsearch WEB web信息收集 /how_to.txt /joomla CMS利用 1、爆破后台 2、登录 3、反弹shell 提权 系统信息收集 rob用户登录 abner用户 penguin用户 get root flag 信息收集…

Gitlab和Jenkins集成 实现CI (一)

版本声明 部署时通过docker拉取的最新版本 gitlab: 16.8 jenkins: 2.426.3 安装环境 可参考这篇文章 停止防火墙 由于在内网&#xff0c;这里防火墙彻底关掉&#xff0c;如果再外网或者云上的悠着点 systemctl stop firewalled systemctl disable firewalledsystemctl sto…

K8S之运用亲和性设置Pod的调度约束

亲和性 Node节点亲和性硬亲和实践软亲和性实践 Pod节点亲和性和反亲和性pod亲和性硬亲和实践 pod反亲和性 Pod 的yaml文件里 spec 字段中包含一个 affinity 字段&#xff0c;使用一组亲和性调度规则&#xff0c;指定pod的调度约束。 kubectl explain pods.spec.affinity 配置…

【代码】Processing笔触手写板笔刷代码合集

代码来源于openprocessing&#xff0c;考虑到国内不是很好访问&#xff0c;我把我找到的比较好的搬运过来&#xff01; 合集 参考&#xff1a;https://openprocessing.org/sketch/793375 https://github.com/SourceOf0-HTML/processing-p5.js/tree/master 这个可以体验6种笔触…

ubuntu22.04安装部署03: 设置root密码

一、前言 ubuntu22.04 安装完成以后&#xff0c;默认root用户是没有设置密码的&#xff0c;需要手动设置。具体的设置过程如下文内容所示&#xff1a; 相关文件&#xff1a; 《ubuntu22.04装部署01&#xff1a;禁用内核更新》 《ubuntu22.04装部署02&#xff1a;禁用显卡更…

Unity类银河恶魔城学习记录4-4 4-5 P57-58 On Hit Impactp- Attack‘direction fix源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Entity.cs using System.Collections; using System.Collections.Generic;…

排序算法---快速排序

原创不易&#xff0c;转载请注明出处。欢迎点赞收藏~ 快速排序是一种常用的排序算法&#xff0c;采用分治的策略来进行排序。它的基本思想是选取一个元素作为基准&#xff08;通常是数组中的第一个元素&#xff09;&#xff0c;然后将数组分割成两部分&#xff0c;其中一部分的…

苹果mac电脑如何优化系统?保持不卡顿呢

再强悍的性能和优秀的操作系统&#xff0c;但长时间使用后&#xff0c;有时也会出现卡顿的情况。为了让你的苹果电脑保持高效运行&#xff0c;我们将深入探讨导致电脑卡顿的原因&#xff0c;并提供苹果电脑如何优化系统的解决方案&#xff0c;帮助你优化系统。 过多的启动项 …

排序算法---归并排序

原创不易&#xff0c;转载请注明出处。欢迎点赞收藏~ 归并排序是一种常见的排序算法&#xff0c;它采用了分治的思想。它将一个待排序的数组递归地分成两个子数组&#xff0c;分别对两个子数组进行排序&#xff0c;然后将排好序的子数组合并成一个有序数组。 具体的归并排序过…

Spring第二天

一、第三方资源配置管理 说明&#xff1a;以管理DataSource连接池对象为例讲解第三方资源配置管理 1 管理DataSource连接池对象 问题导入 配置数据库连接参数时&#xff0c;注入驱动类名是用driverClassName还是driver&#xff1f; 1.1 管理Druid连接池【重点】 数据库准备…

【集合系列】TreeMap 集合

TreeMap 集合 1. 概述2. 方法3. 遍历方式4. 排序方式5. 代码示例16. 代码示例27. 代码示例38. 注意事项 其他集合类 父类 Map 集合类的遍历方式 TreeSet 集合 具体信息请查看 API 帮助文档 1. 概述 TreeMap 是 Java 中的一个集合类&#xff0c;它实现了 SortedMap 接口。它是…

深入理解Netty及核心组件使用—上

目录 Netty的优势 为什么Netty使用NIO而不是AIO&#xff1f; Netty基本组件 Bootstrap、EventLoop(Group) 、Channel 事件和 ChannelHandler、ChannelPipeline ChannelFuture Netty入门程序 服务端代码 客户端代码 运行结果 Netty的优势 1. API 使用简单&#xff0c…