生成函数性质速查表

摘要: 生成函数的性质

【对数据分析、人工智能、金融科技、风控服务感兴趣的同学,欢迎关注我哈,原创文章】
我的网站:潮汐朝夕的生活实验室
我的公众号:潮汐朝夕
我的知乎:潮汐朝夕
我的github:FennelDumplings
我的leetcode:FennelDumplings


生成函数即母函数,有时也叫形式幂级数。是组合数学中的一个重要理论和工具。

生成函数的一个重要线索来自于 18 世纪欧拉对整数分拆问题的研究,其中有了一些生成函数思想的雏形(该项研究同样也是卷积和的思想来源的线索)。

最早提出母函数的是法国数学家拉普拉斯,他在其 1812 年出版的《概率的分析理论》中明确提出“概率生成函数的计算”,书中对欧拉的整数分拆的研究做了延伸。生成函数的理论由此基本建立。

生成函数可以对组合对象进行计数,也可以作为分析工具去求解递归式。求解递归式的过程中,最关键的一步是在递归式的基础上,做各种变形,去凑生成函数的性质,得到生成函数满足的微分方程或函数方程。

下面我们不加证明地罗列普通生成函数和指数生成函数的常用性质,在凑的时候要用到,背是背不下来的,用到的时候可以查。

普通生成函数 (OGF)

OGF 的性质

普通生成函数常用于无标记的组合结构的计数问题。

A ( z ) = ∑ n = 0 ∞ a n z n A(z) = \sum\limits_{n=0}\limits^{\infty}a_{n}z^{n} A(z)=n=0anzn B ( z ) = ∑ n = 0 ∞ b n z n B(z) = \sum\limits_{n=0}\limits^{\infty}b_{n}z^{n} B(z)=n=0bnzn

性质公式
数列的相加 A ( z ) + B ( z ) = ∑ n = 0 ∞ ( a n + b n ) z n A(z) + B(z) = \sum\limits_{n=0}\limits^{\infty}(a_{n} + b_{n})z^{n} A(z)+B(z)=n=0(an+bn)zn
数列的数乘 α A ( z ) = ∑ n = 0 ∞ α a n z n \alpha A(z) = \sum\limits_{n=0}\limits^{\infty}\alpha a_{n}z^{n} αA(z)=n=0αanzn
数列的卷积(OGF的相乘) A ( z ) B ( z ) = ∑ n = 0 ∞ ( ∑ k = 0 n a k b n − k ) z n A(z)B(z) = \sum\limits_{n=0}\limits^{\infty}(\sum\limits_{k=0}\limits^{n}a_{k}b_{n-k})z^{n} A(z)B(z)=n=0(k=0nakbnk)zn
数列的差分 ( 1 − z ) A ( z ) = a 0 + ∑ n = 1 ∞ ( a n − a n − 1 ) z n (1 - z)A(z) = a_{0} + \sum\limits_{n=1}\limits^{\infty}(a_{n} - a_{n-1})z^{n} (1z)A(z)=a0+n=1(anan1)zn
数列的部分和 A ( z ) 1 − z = ∑ n = 0 ∞ ( ∑ k = 0 n a k ) z n \frac{A(z)}{1 - z} = \sum\limits_{n=0}\limits^{\infty}(\sum\limits_{k=0}\limits^{n}a_{k})z^{n} 1zA(z)=n=0(k=0nak)zn
数列的右移(OGF乘自变量) z A ( z ) = ∑ n = 1 ∞ a n − 1 z n zA(z) = \sum\limits_{n=1}\limits^{\infty}a_{n-1}z^{n} zA(z)=n=1an1zn
数列的左移(OGF除自变量) A ( z ) − a 0 z = ∑ n = 0 ∞ a n + 1 z n \frac{A(z)-a_{0}}{z} = \sum\limits_{n=0}\limits^{\infty}a_{n+1}z^{n} zA(z)a0=n=0an+1zn
OGF的导数(数列乘下标) A ′ ( z ) = ∑ n = 0 ∞ ( n + 1 ) a n + 1 z n A'(z) = \sum\limits_{n=0}\limits^{\infty}(n+1)a_{n+1}z^{n} A(z)=n=0(n+1)an+1zn
OGF的积分(数列除下标) ∫ 0 z A ( t ) d t = ∑ n = 1 ∞ a n − 1 n − 1 z n \int_{0}^{z}A(t)\mathrm{d}t = \sum\limits_{n=1}\limits^{\infty}\frac{a_{n-1}}{n-1}z^{n} 0zA(t)dt=n=1n1an1zn
OGF自变量的比例因子 A ( λ z ) = ∑ n = 0 ∞ λ n a n z n A(\lambda z) = \sum\limits_{n=0}\limits^{\infty}\lambda^{n}a_{n}z^{n} A(λz)=n=0λnanzn
OGF的复合 A ( B ( z ) ) = ∑ n = 0 ∞ a n ( B ( z ) ) n A(B(z)) = \sum\limits_{n=0}\limits^{\infty}a_{n}(B(z))^{n} A(B(z))=n=0an(B(z))n,要求 b 0 = 0 b_{0} = 0 b0=0

常见数列的 OGF

数列 a n a_{n} anOGF A ( z ) A(z) A(z)
a n = 1 a_{n} = 1 an=1 A ( z ) = 1 1 − z A(z) = \frac{1}{1-z} A(z)=1z1
a n = n a_{n} = n an=n A ( z ) = z ( 1 − z ) 2 A(z) = \frac{z}{(1-z)^{2}} A(z)=(1z)2z
a n = ( n 2 ) a_{n} = \binom{n}{2} an=(2n) A ( z ) = z 2 ( 1 − z ) 3 A(z) = \frac{z^{2}}{(1-z)^{3}} A(z)=(1z)3z2
a n = ( n m ) a_{n} = \binom{n}{m} an=(mn) A ( z ) = z m ( 1 − z ) m + 1 A(z) = \frac{z^{m}}{(1-z)^{m+1}} A(z)=(1z)m+1zm
a n = ( m n ) a_{n} = \binom{m}{n} an=(nm) A ( z ) = ( 1 + z ) m A(z) = (1+z)^{m} A(z)=(1+z)m
a 2 k = 1 , a 2 k + 1 = 0 a_{2k}=1, a_{2k+1}=0 a2k=1,a2k+1=0 A ( z ) = 1 1 − z 2 A(z) = \frac{1}{1-z^{2}} A(z)=1z21
a n = c n a_{n} = c^{n} an=cn A ( z ) = 1 1 − c z A(z) = \frac{1}{1-cz} A(z)=1cz1
a n = 1 n ! a_{n} = \frac{1}{n!} an=n!1 A ( z ) = e z A(z) = e^{z} A(z)=ez
a n = 1 n a_{n} = \frac{1}{n} an=n1 A ( z ) = − ln ⁡ ( 1 − z ) A(z) = -\ln(1-z) A(z)=ln(1z)
a n = H n a_{n} = H_{n} an=Hn A ( z ) = 1 1 − z ln ⁡ 1 1 − z A(z) = \frac{1}{1-z}\ln\frac{1}{1-z} A(z)=1z1ln1z1
a n = n ( H n − 1 ) a_{n} = n(H_{n} - 1) an=n(Hn1) A ( z ) = z ( 1 − z ) 2 ln ⁡ 1 1 − z A(z) = \frac{z}{(1-z)^{2}}\ln\frac{1}{1-z} A(z)=(1z)2zln1z1

指数生成函数 (EGF)

指数型生成函数常用于有标记的组合结构的计数问题。

A ( z ) = ∑ n = 0 ∞ a n z n n ! A(z) = \sum\limits_{n=0}\limits^{\infty}a_{n}\frac{z^{n}}{n!} A(z)=n=0ann!zn B ( z ) = ∑ n = 0 ∞ b n z n n ! B(z) = \sum\limits_{n=0}\limits^{\infty}b_{n}\frac{z^{n}}{n!} B(z)=n=0bnn!zn

EGF 的性质

性质公式
数列的相加 A ( z ) + B ( z ) = ∑ n = 0 ∞ ( a n + b n ) z n n ! A(z) + B(z) = \sum\limits_{n=0}\limits^{\infty}(a_{n} + b_{n})\frac{z^{n}}{n!} A(z)+B(z)=n=0(an+bn)n!zn
数列的数乘 α A ( z ) = ∑ n = 0 ∞ α a n z n n ! \alpha A(z) = \sum\limits_{n=0}\limits^{\infty}\alpha a_{n}\frac{z^{n}}{n!} αA(z)=n=0αann!zn
数列的二项卷积(EGF的相乘) A ( z ) B ( z ) = ∑ n = 0 ∞ ( ∑ k = 0 n ( n k ) a k b n − k ) z n n ! A(z)B(z) = \sum\limits_{n=0}\limits^{\infty}(\sum\limits_{k=0}\limits^{n}\binom{n}{k}a_{k}b_{n-k})\frac{z^{n}}{n!} A(z)B(z)=n=0(k=0n(kn)akbnk)n!zn
数列的差分 A ′ ( z ) − A ( z ) = ∑ n = 0 ∞ ( a n + 1 − a n ) z n n ! A'(z) - A(z) = \sum\limits_{n=0}\limits^{\infty}(a_{n+1} - a_{n})\frac{z^{n}}{n!} A(z)A(z)=n=0(an+1an)n!zn
数列的二项部分和 e z A ( z ) = ∑ n = 0 ∞ ( ∑ k = 0 n ( n k ) a k ) z n n ! e^{z}A(z) = \sum\limits_{n=0}\limits^{\infty}(\sum\limits_{k=0}\limits^{n}\binom{n}{k}a_{k})\frac{z^{n}}{n!} ezA(z)=n=0(k=0n(kn)ak)n!zn
数列的右移(EGF的积分) ∫ 0 z A ( t ) d t = ∑ n = 1 ∞ a n − 1 z n n ! \int_{0}^{z}A(t)\mathrm{d}t = \sum\limits_{n=1}\limits^{\infty}a_{n-1}\frac{z^{n}}{n!} 0zA(t)dt=n=1an1n!zn
数列的左移(EGF的导数) A ′ ( z ) = ∑ n = 0 ∞ a n + 1 z n n ! A'(z) = \sum\limits_{n=0}\limits^{\infty}a_{n+1}\frac{z^{n}}{n!} A(z)=n=0an+1n!zn
EGF乘自变量(数列乘下标) z A ( z ) = ∑ n = 0 ∞ n a n − 1 z n n ! zA(z) = \sum\limits_{n=0}\limits^{\infty}na_{n-1}\frac{z^{n}}{n!} zA(z)=n=0nan1n!zn
EGF除自变量(数列除下标) A ( z ) − A ( 0 ) z = ∑ n = 1 ∞ a n + 1 n + 1 z n n ! \frac{A(z)-A(0)}{z} = \sum\limits_{n=1}\limits^{\infty}\frac{a_{n+1}}{n+1}\frac{z^{n}}{n!} zA(z)A(0)=n=1n+1an+1n!zn

常见数列的 EGF

数列 a n a_{n} anEGF A ( z ) A(z) A(z)
a n = 1 a_{n} = 1 an=1 A ( z ) = e z A(z) = e^{z} A(z)=ez
a n = n a_{n} = n an=n A ( z ) = z e z A(z) = ze^{z} A(z)=zez
a n = ( n 2 ) a_{n} = \binom{n}{2} an=(2n) A ( z ) = 1 2 z 2 e z A(z) = \frac{1}{2}z^{2}e^{z} A(z)=21z2ez
a n = ( n m ) a_{n} = \binom{n}{m} an=(mn) A ( z ) = 1 m ! z m e z A(z) = \frac{1}{m!}z^{m}e^{z} A(z)=m!1zmez
a 2 k = 1 , a 2 k + 1 = 0 a_{2k}=1, a_{2k+1}=0 a2k=1,a2k+1=0 A ( z ) = 1 2 ( e z + e − z ) A(z) = \frac{1}{2}(e^{z} + e^{-z}) A(z)=21(ez+ez)
a n = c n a_{n} = c^{n} an=cn A ( z ) = e c z A(z) = e^{cz} A(z)=ecz
a n = 1 n a_{n} = \frac{1}{n} an=n1 A ( z ) = e z − 1 z A(z) = \frac{e^{z}-1}{z} A(z)=zez1
a n = n ! a_{n} = n! an=n! A ( z ) = 1 1 − z A(z) = \frac{1}{1-z} A(z)=1z1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/673356.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端开发 :(二)HTML基础

1. 介绍HTML 1.1 HTML的定义和作用 HTML(HyperText Markup Language)是一种标记语言,用于创建和设计网页的结构和内容。它通过使用标签来描述文档的结构,使得浏览器能够正确地解释和显示页面。 1.2 HTML的发展历史 HTML的发展…

StringBuilder类常用方法(Java)

StringBuilder类常用方法 StringBuilder 是 Java 中常用的字符串缓冲区类,适用于频繁修改字符串的场景。 1. append(): 将指定字符串、字符、布尔值或其他数据类型的表示追加到字符串缓冲区的末尾。 StringBuilder sb new StringBuilder("Hello"); sb.…

微信小程序(三十七)选项点击高亮效果

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.选择性渲染类 2.以数字为需渲染内容&#xff08;数量&#xff09; 源码&#xff1a; index.wxml <view class"Area"><!-- {{activeNumindex?Active:}}是选择性添加类名进行渲染 -->&l…

深兰科技“华佗”医用红外热像仪正式获批国家医疗器械二类证

近日&#xff0c;深兰科技自主研发生产的医用红外热像仪&#xff0c;经国家食药监局严格审查&#xff0c;顺利通过了国家药品监督局的医疗器械产品认证&#xff0c;拿到了国家二类医疗器械注册证。这标志着深兰科技“华佗”医用红外热像仪的产品性能和质量均已达到国家标准&…

nacos安装手册

1. 单机模式 1.1 准备安装介质 nacos-server-2.1.1.tar.gz1.2 环境准备 1台服务器安装JDK 1.8 1.3 解压 tar-zxvf nacos-server-2.1.1.tar.gz1.4 启动 进入解压的nacos目录&#xff0c;进入bin目录&#xff0c;运行&#xff1a; ./startup.sh -m standalone1.5 验证 na…

互联网加竞赛 基于深度学习的行人重识别(person reid)

文章目录 0 前言1 技术背景2 技术介绍3 重识别技术实现3.1 数据集3.2 Person REID3.2.1 算法原理3.2.2 算法流程图 4 实现效果5 部分代码6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习的行人重识别 该项目较为新颖&#xff0c;适合…

已解决:tpm2_createpriimay: command not found

出现错误如下&#xff1a; ERROR: Could not change hierarchy for Owner. TPM Error:0x9a2 ERROR: Could not change hierarchy for Endorsement. TPM Error:0x9a2 ERROR: Could not change hierarchy for Lockout. TPM Error:0x98e ERROR: Unable to run tpm2_takeownership…

【es】解决es报错failed to authenticate user [elastic]

【es】解决es报错failed to authenticate user [elastic] 1.背景 某天使用接口查询es数据时出现报错&#xff0c;没有返回数据。想到是测试环境的es因为没内存又挂了&#xff0c;于是上服务器重启服务。 但是重启后等待一段时间再次查询es&#xff0c;还是同样报错&#xff0…

github使用问题汇总

1. Permission denied 1.1. 问题描述 Permission denied (publickey). fatal: Could not read from remote repository. 1.2. 解决方法 生成公钥 ssh-keygen -t ed25519 -C "your_emailexample.com" 点击回车三次 Generating public/private ed25519 key pair. …

无法获取auth_request返回的标头和状态码

这里写自定义目录标题 欢迎使用Markdown编辑器 欢迎使用Markdown编辑器 我有以下测试nginx配置&#xff1a; user nginx; worker_processes auto;error_log /dev/stderr debug; pid /var/run/nginx.pid;events {worker_connections 1024; }http {include /et…

02.02_111期_C++_模板笔记

使用函数模板 实现一个函数就可以起到上面三个函数才能起到的作用 当数据类型是int时&#xff0c;编译器生成一个函数&#xff0c;其形参类型都是int 当数据类型时double时&#xff0c;编译器生成一个函数&#xff0c;其形参类型都是double 在写入template<typename T>这…

Idea:Idea导入Module、子Module的方式及其可能遇到的问题

参考&#xff1a;https://blog.csdn.net/qjyws/article/details/127617536 1.父module的maven添加sub module xxx-module-xxx-api xxx-module-xxx-biz 2.project structure–>import module–>添加sub module 3.maven–>Reload project即可

为什么大模型需要向量数据库?

AIGC 时代万物都可以向量化&#xff0c;向量化是 LLM 大模型以及 Agent 应用的基础。 比如&#xff1a;爆火的 Google 大模型 Gemini 1.0 原生支持的多模态&#xff0c;在预训练的时候就是把文本、图片、音频、视频等多模态先进行 token 化&#xff0c;然后构建一维的“语言”…

深掘开源安全需求,破解开源治理难题

当下&#xff0c;中国金融科技行业在数字支付、数字信贷、金融风控等领域取得了很多创新成果&#xff0c;大幅提升了金融数字化和智能化水平&#xff0c;已经在金融科技的全球竞争中走在前列。 在此进程中&#xff0c;开源技术发挥了不可或缺的重要作用&#xff0c;根据我国金…

MySQL视图和索引

一、视图 1.什么是视图 MySQL 视图&#xff08;View&#xff09;是一种虚拟存在的表&#xff0c;同真实表一样&#xff0c;视图也由列和行构成&#xff0c;但视图并不实际存在于数据库中。行和列的数据来自于定义视图的查询中所使用的表&#xff0c;并且还是在使用视图时动态…

双非本科准备秋招(19.2)—— 设计模式之保护式暂停

一、wait & notify wait能让线程进入waiting状态&#xff0c;这时候就需要比较一下和sleep的区别了。 sleep vs wait 1) sleep 是 Thread 方法&#xff0c;而 wait 是 Object 的方法 2) sleep 不需要强制和 synchronized 配合使用&#xff0c;但 wait 强制和 s…

航芯ACM32G103开发板评测 06 1.28圆形屏幕 LVGL移植

航芯ACM32G103开发板评测 06 1.28圆形屏幕 LVGL移植 软硬件平台 航芯ACM32G103开发板1.28寸圆形彩色TFT显示屏高清IPS 模块240X240 SPI接口 GC9A01驱动芯片LVGL V8.3.1源码 LVGL LVGL&#xff08;Light and Versatile Graphics Library&#xff09;是一个免费的开源图形库&…

微信小程序实现吸顶、网格、瀑布流布局

微信小程序开发通常是在webview模式下编写&#xff0c;但是对小程序的渲染性能有一定的追求&#xff0c;就需要使用Skyline模式进行渲染&#xff0c;同时在这种模式下有也有一些特殊的组件&#xff0c;可以轻松的实现想要的效果&#xff0c;本文将介绍在Skyline模式下如何实现吸…

【iOS ARKit】人形提取

为解决人形分离和深度估计问题&#xff0c;ARKit 新增加了 Segmentation Buffer&#xff08;人体分隔缓冲区&#xff09;和Estimated Depth Data Buffer&#xff08;深度估计缓冲区&#xff09;两个缓冲区。人体分隔缓冲区作用类似于图形渲染管线中的 Stencil Buffer&#xff0…

进程状态 | 僵尸进程 | 孤儿进程 | 前台后台进程 | 守护进程

文章目录 1.进程的三种基本状态2.Linux中进程状态查看2.1.进程检测脚本2.2.各种状态查看 3.孤儿进程4.前台、后台、守护进程 1.进程的三种基本状态 进程的在系统当中是走走停停的&#xff0c;「运行 - 暂停 - 运行」的活动规律&#xff1b;进程在活动期间的三种状态&#xff1…