为什么大模型需要向量数据库?

AIGC 时代万物都可以向量化,向量化是 LLM 大模型以及 Agent 应用的基础。

比如:爆火的 Google 大模型 Gemini 1.0 原生支持的多模态,在预训练的时候就是把文本、图片、音频、视频等多模态先进行 token 化,然后构建一维的“语言”序列,再进行向量化,实现了原生多模态的支持。

向量技术是向量数据库的核心,一个企业级的向量数据库,在功能维度需要具备 Embedding 嵌入生成向量数据、向量数据存储、向量数据相似度检索、提供 "CRUD” API 接口等,在性能维度需要提供分布式架构提供无缝的弹性伸缩功能以支持用户访问请求的高吞吐量和低延迟。在可观性维度需要提供自动化部署、立体监控、业务调试、业务测试、业务评估等功能。

向量数据库的优势

向量数据库相对于传统数据库具有几项重要的优势,特别是在处理大规模高维度向量数据时:

  1. 高效的相似度搜索: 向量数据库设计旨在快速执行相似度搜索,这意味着它们能够有效地处理大规模的向量数据集,并且能够在其中快速找到最相似的向量。这对于许多应用场景,如推荐系统、图像识别、自然语言处理等是至关重要的。

  2. 针对向量的优化存储和索引结构: 传统数据库通常使用 B 树或者哈希索引来支持数据检索,但这些索引结构不太适合高维度向量数据的相似度搜索。向量数据库采用了更适合向量数据的存储和索引结构,如向量树、局部敏感哈希(LSH)等,这些结构可以更有效地支持向量数据的相似度搜索。

  3. 内置向量运算支持: 一些向量数据库提供了内置的向量运算功能,如向量加法、减法、乘法、点积等,这些功能可以直接在数据库中进行向量计算,而无需将数据提取到应用程序中进行处理,从而提高了处理效率并降低了网络通信成本。

  4. 实时更新和查询: 向量数据库通常能够支持实时更新和查询,这意味着它们能够快速响应数据的变化,并且能够在实时环境下进行相似度搜索和数据分析。

  5. 容易扩展和部署: 高性能的向量数据库通常支持水平扩展,可以轻松地在集群中添加新节点来处理更多的数据和请求,同时还能保持较高的性能。

总体而言,向量数据库在处理高维度向量数据和执行相似度搜索方面具有明显的优势,能够更好地满足现代数据应用的需求。

向量数据库如何选型

如果你需要快速构建原型系统并对性能有一定要求,Faiss 可能是一个好选择。

Faiss 是 Meta 开源的一个库,用于高效相似性搜索和密集向量聚类。它能处理任意大小的向量集合,甚至是无法全部装入内存的集合。Faiss 还包含了用于评估和参数调优的工具。Faiss 是用 C++ 编写的,但提供了完整的 Python/NumPy 接口。

Faiss 足够简单,性能似乎也足够快,也能够应付小规模的生产场景。当然,还可以通过量化、降维、使用 GPU 等方案进一步提升查询性能。

然而,尽管向量搜索库,比如 Faiss 提供了强大和高效的向量搜索功能,但在实际生产环境中,它们存在一些限制。Faiss 并没有提供处理数据的实时增删、缺乏多语言的支持,无法提供远程调用、不支持标量过滤、也不提供数据的持久化,可扩展性和容灾等问题的解决方案。

正是因为这些原因,向量数据库应运而生,为我们提供了一种更完整、更适合实际应用场景的解决方案。

向量数据库战场目前主要分为四个类别:

  • 基于 PG、Clickhouse 等进行魔改或者插件化实现的向量数据库。这类解决方案以现有的关系数据库或列存数据库作为基础,通过修改或插件扩展的方式添加向量搜索功能,PG Vector是这类解决方案的代表产品。

  • 基于传统倒排搜索添加稠密向量索引支持的向量数据库。这类解决方案以倒排索引搜索引擎作为基础,通过扩展索引机制以支持向量搜索,ElasticSearch是这类解决方案的代表产品。

  • 基于向量检索库实现的轻量级向量数据库。这类解决方案以向量搜索库(如 Faiss)为核心,围绕其构建数据库功能。这些产品通常具有较小的体积和较高的运行效率,Chroma 是这类解决方案的代表产品。

  • 基于原生向量设计的分布式向量云原生数据数据库。这类解决方案从零开始设计和实现向量数据库,整个系统从底层到顶层都针对向量搜索进行了优化,通常提供了更完整和高级的功能,包括分布式计算、容灾备份、数据持久化等,Zilliz Cloud/Milvus 是这类解决方案的代表产品。

不过,“Not All Vector Database are born equal”(并非所有向量数据库都生来平等)。在各类向量数据库中,每种解决方案都有其独特的优点和限制,并且它们各自适合于不同的应用场景。

在所有的向量数据库方案中,我个人对基于 PG、Clickhouse等进行魔改或者插件化实现的向量数据库(如 PG Vector)以及基于原生向量设计的分布式向量云原生数据数据库(例如 Zilliz Cloud/Milvus)这两种截然不同的解决方案特别看好。

还有更多选型落地场景,今晚20点直播中详细剖析,请同学们点击免费预约

总之,掌握好向量数据库的选型和落地实现,对于 IT 人来说是一项非常重要的技能。

基于向量数据库完成 RAG 业务实际工作

第一、基于向量数据库实现 RAG(Retrieval Augmented Generation)应用

RAG 是一种使用企业级私有和实时的数据用来增强 LLM 大模型能力的一种技术,由两个步骤构成:建立向量索引(Indexing)和检索生成(Retrieval and Generation)。

建立向量索引(Indexing)由加载外部知识(Load)、切分大文本为小的单元块(Split)、向量存储(Store)三步组成。

图片

检索生成(Retrieval and Generation)由向量知识库检索最相似的 TopK 记录(Retrieve)和 LLM 大模型生成结果(Generate)两步构成。

图片

总体来讲,分为离线建立向量数据部分和在线相似度增强和检索部分,如下图所示。

图片

第二、使用 OpenAI Assistants 实现 RAG 应用

乍一看,OpenAI Assistants 自带的检索功能十分强大,但如果对行业足够了解,便会发现其仍存在诸多限制。OpenAI Assistants 检索严格限制了数据规模,且缺乏定制化的能力。因此,搭建高效的应用还需要使用自定义的检索器。

所幸,OpenAI 的函数调用能力允许开发者无缝接入自定义的检索器,从而打破对于知识库数据量的限制,更好地适应多样化的用例。

我们可以使用 Milvus 实现 OpenAI Assistants 检索定制化。

Milvus 是一款高度灵活、可扩展的开源向量数据库,毫秒内即可实现十亿级别向量的存储和检索。由于优秀的扩展性和超低的查询延时,Milvus 是定制 OpenAI Assistants 检索的首选,下图为 OpenAI Assistant 函数调用通用的工作原理。

图片

总之,掌握好基于向量数据库的 RAG 业务应用落地实现,对于 IT 人来说是一项非常重要的技能

技术交流&资料

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

成立了大模型技术交流群,本文完整代码、相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:来自CSDN + 技术交流

通俗易懂讲解大模型系列

  • 做大模型也有1年多了,聊聊这段时间的感悟!

  • 用通俗易懂的方式讲解:大模型算法工程师最全面试题汇总

  • 用通俗易懂的方式讲解:不要再苦苦寻觅了!AI 大模型面试指南(含答案)的最全总结来了!

  • 用通俗易懂的方式讲解:我的大模型岗位面试总结:共24家,9个offer

  • 用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战

  • 用通俗易懂的方式讲解:一文讲清大模型 RAG 技术全流程

  • 用通俗易懂的方式讲解:如何提升大模型 Agent 的能力?

  • 用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!

  • 用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了

  • 用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型

  • 用通俗易懂的方式讲解:使用 LangChain 和大模型生成海报文案

  • 用通俗易懂的方式讲解:ChatGLM3-6B 部署指南

  • 用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了

  • 用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统

  • 用通俗易懂的方式讲解:在 Ubuntu 22 上安装 CUDA、Nvidia 显卡驱动、PyTorch等大模型基础环境

  • 用通俗易懂的方式讲解:Llama2 部署讲解及试用方式

  • 用通俗易懂的方式讲解:基于 LangChain 和 ChatGLM2 打造自有知识库问答系统

  • 用通俗易懂的方式讲解:一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路

  • 用通俗易懂的方式讲解:对 embedding 模型进行微调,我的大模型召回效果提升了太多了

  • 用通俗易懂的方式讲解:LlamaIndex 官方发布高清大图,纵览高级 RAG技术

  • 用通俗易懂的方式讲解:为什么大模型 Advanced RAG 方法对于AI的未来至关重要?

  • 用通俗易懂的方式讲解:使用 LlamaIndex 和 Eleasticsearch 进行大模型 RAG 检索增强生成

  • 用通俗易懂的方式讲解:基于 Langchain 框架,利用 MongoDB 矢量搜索实现大模型 RAG 高级检索方法

  • 用通俗易懂的方式讲解:使用Llama-2、PgVector和LlamaIndex,构建大模型 RAG 全流程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/673343.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深掘开源安全需求,破解开源治理难题

当下,中国金融科技行业在数字支付、数字信贷、金融风控等领域取得了很多创新成果,大幅提升了金融数字化和智能化水平,已经在金融科技的全球竞争中走在前列。 在此进程中,开源技术发挥了不可或缺的重要作用,根据我国金…

MySQL视图和索引

一、视图 1.什么是视图 MySQL 视图(View)是一种虚拟存在的表,同真实表一样,视图也由列和行构成,但视图并不实际存在于数据库中。行和列的数据来自于定义视图的查询中所使用的表,并且还是在使用视图时动态…

双非本科准备秋招(19.2)—— 设计模式之保护式暂停

一、wait & notify wait能让线程进入waiting状态,这时候就需要比较一下和sleep的区别了。 sleep vs wait 1) sleep 是 Thread 方法,而 wait 是 Object 的方法 2) sleep 不需要强制和 synchronized 配合使用,但 wait 强制和 s…

航芯ACM32G103开发板评测 06 1.28圆形屏幕 LVGL移植

航芯ACM32G103开发板评测 06 1.28圆形屏幕 LVGL移植 软硬件平台 航芯ACM32G103开发板1.28寸圆形彩色TFT显示屏高清IPS 模块240X240 SPI接口 GC9A01驱动芯片LVGL V8.3.1源码 LVGL LVGL(Light and Versatile Graphics Library)是一个免费的开源图形库&…

微信小程序实现吸顶、网格、瀑布流布局

微信小程序开发通常是在webview模式下编写,但是对小程序的渲染性能有一定的追求,就需要使用Skyline模式进行渲染,同时在这种模式下有也有一些特殊的组件,可以轻松的实现想要的效果,本文将介绍在Skyline模式下如何实现吸…

【iOS ARKit】人形提取

为解决人形分离和深度估计问题,ARKit 新增加了 Segmentation Buffer(人体分隔缓冲区)和Estimated Depth Data Buffer(深度估计缓冲区)两个缓冲区。人体分隔缓冲区作用类似于图形渲染管线中的 Stencil Buffer&#xff0…

进程状态 | 僵尸进程 | 孤儿进程 | 前台后台进程 | 守护进程

文章目录 1.进程的三种基本状态2.Linux中进程状态查看2.1.进程检测脚本2.2.各种状态查看 3.孤儿进程4.前台、后台、守护进程 1.进程的三种基本状态 进程的在系统当中是走走停停的,「运行 - 暂停 - 运行」的活动规律;进程在活动期间的三种状态&#xff1…

【leetcode题解C++】450.删除二叉搜索树中的节点 and 669.修剪二叉搜索树 and 108.将有序数组转换为二叉搜索树

450. 删除二叉搜索树中的节点 给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。 一般来说,删除节点可…

分别通过select、多进程、多线程实现一个并发服务器

select #include<myhead.h>#define PORT 8888 //端口号 #define IP "192.168.114.109" //IP地址int main(int argc, const char *argv[]) {//1、创建用于接受连接的套接字int sfd socket(AF_INET, SOCK_STREAM, 0);if(sfd -1){perror(&q…

【Langchain+Streamlit】旅游聊天机器人

【LangchainStreamlit】打造一个旅游问答AI-CSDN博客 项目线上地址&#xff0c;无需openai秘钥可直接体验&#xff1a;http://101.33.225.241:8502/ github地址&#xff1a;GitHub - jerry1900/langchain_chatbot: langchainstreamlit打造的一个有memory的旅游聊天机器人&…

什么是数据库软删除,什么场景下要用软删除?(go GORM硬删除)

文章目录 什么是数据库软删除&#xff0c;什么场景下要用软删除&#xff1f;go GORM硬删除什么是数据库软删除什么场景下要用软删除 什么是数据库软删除&#xff0c;什么场景下要用软删除&#xff1f; go GORM硬删除 使用的是 GORM&#xff0c;默认启用了软删除功能&#xff…

设计模式(结构型模式)桥接模式

目录 一、简介二、桥接模式2.1、手机品牌接口2.2、手机功能接口2.3、抽象部分2.4、具体抽象部分2.5、使用 三、优点和缺点 一、简介 桥接模式&#xff08;Bridge Pattern&#xff09; 是一种结构型设计模式&#xff0c;用于将抽象部分与它的实现部分分离&#xff0c;使它们可以…

【算法题】96. 不同的二叉搜索树

题目 给你一个整数 n &#xff0c;求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种&#xff1f;返回满足题意的二叉搜索树的种数。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;5 示例 2&#xff1a; 输入&#xff1a;n 1 输出&#x…

js逆向-某东验证码逆向分析

声明 本文仅供学习参考&#xff0c;如有侵权可私信本人删除&#xff0c;请勿用于其他途径&#xff0c;违者后果自负&#xff01; 如果觉得文章对你有所帮助&#xff0c;可以给博主点击关注和收藏哦&#xff01; 插句个人内容&#xff1a;本人最近正在找工作&#xff0c;工作城…

MySQL数据库常用语法回顾及知识点合集(持续更新中……)

前言 本文适合有一定基础的进行快速简单回顾复习。 对于现如今的无论哪一类软件或应用&#xff0c;都几乎无法离开数据库&#xff0c;常见使用的关系性数据库如MySQL、Oracle&#xff0c;非关系性数据库如MongoDB、Redis等。而MySQL数据库则是软件开发中最常用的数据库之一&…

基于SpringBoot的美妆管理系统

文章目录 项目介绍主要功能截图&#xff1a;部分代码展示设计总结项目获取方式 &#x1f345; 作者主页&#xff1a;超级无敌暴龙战士塔塔开 &#x1f345; 简介&#xff1a;Java领域优质创作者&#x1f3c6;、 简历模板、学习资料、面试题库【关注我&#xff0c;都给你】 &…

CS50x 2024 - Lecture 1 - C

本周学习C语言&#xff0c;重点是函数、变量、条件语句和循环。 05:11介绍了编程语言的转换过程&#xff0c;从源代码到机器码&#xff0c;以及编译器的作用。 编译器是将一种语言翻译成另一种语言的程序 09:18使用CS50.dev进行编程&#xff0c;介绍了VS Code和命令行界面的…

LeetCode Python - 1.两数之和

文章目录 题目答案运行结果 题目 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一个元素在答案里不能…

数据结构——算法的时间复杂度和空间复杂度

1、算法效率 1.1如何衡量一个算法的好坏&#xff1f; 比如我们最熟悉的斐波那契数列 long long Fib(int N) {if(N < 3)return 1;return Fib(N-1) Fib(N-2); } 上面的斐波那契数列使用递归实现&#xff0c;看起来非常的简洁&#xff0c;那么代码一定是越简洁越好么&…

930. 和相同的二元子数组(多指针滑动窗口)

多指针滑动窗口 滑动窗口&#xff0c;由于题目中数组为二元组数组&#xff0c;对于每一个数组下标 j &#xff0c;当其满足 preSum[j]−preSum[i]goal的条件时&#xff0c;对应 i为一个连续区间&#xff0c;若能够求得 i 的左右边界 left1 与 left2&#xff0c;则此时共有 left…