互联网加竞赛 基于深度学习的行人重识别(person reid)

文章目录

  • 0 前言
  • 1 技术背景
  • 2 技术介绍
  • 3 重识别技术实现
    • 3.1 数据集
    • 3.2 Person REID
      • 3.2.1 算法原理
      • 3.2.2 算法流程图
  • 4 实现效果
  • 5 部分代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的行人重识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 技术背景

行人重识别技术,是智能视频监控系统的关键技术之一,其研宄是针对特定目标行人的视频检索识别问题。行人再识别是一种自动的目标判定识别技术,它综合地运用了计算机视觉技术、机器学习、视频处理、图像分析、模式识别等多种相关技术于监控系统中,其主要描述的是在多个无重叠视域的摄像头监控环境之下,通过相关算法判断在某个镜头下出现过的感兴趣的目标人物是否在其他摄像头下再次出现。

2 技术介绍

在视频监控系统中,行人再识别任务的整体框架如下图所示:
—个监控系统由多个视域不相交的监控摄像头组成,摄像机的位置可以随时更改,同时也可以随时增加或减少摄像机。不两监控摄像头所摄取的画面、视角等各不相同。在这样的监控系统中,对行人的动向监测是,至关重要的。

对行人的监控主要基于以下三个基本的模块:

在这里插入图片描述

  • 行人检测:
    行人检测的目标是在图片中定位到行人的具体位置。这一步骤仅涉及到对于静止的单张图片的处理,而没有动态的处理,没有时间序列上的相关分析。

  • 行人轨迹跟踪:
    行人轨迹跟踪的主要任务是在一段时间内提供目标任务的位置移动信息。与行人检测不同,轨迹跟踪与时间序列紧密相关。行人轨迹跟踪是在行人检测的基础上进行的。

  • 行人再识别:
    行人再识别任务的目标是在没有相重合视域的摄像头或摄像机网络内的不同背景下的许多行人中中识别某个特定行人。行人再识别的分析基于行人检测和轨迹跟踪的结果。其主要步骤首先是检测和跟踪视频序列中的行人,从而提取行人的特征,建立构建模型所需的行人特征集数据库。


在此基础上,用训练出的模型进行学习从而判断得出某个摄像头下的行人与另一摄像头下的目标人物为同一个人。在智能视频监控系统中的行人再识别任务具有非常广阔的应用前景。行人再识别的应用与行人检测、目标跟踪、行人行为分析、敏感事件检测等等都有着紧密的联系,这些分析处理技术对于公安部门的刑侦工作和城市安防建设工作有着重要的意义。

3 重识别技术实现

3.1 数据集

目前行人再识别的研究需要大量的行人数据集。行人再识别的数据集主要是通过在不同区域假设无重叠视域的多个摄像头来采集拍摄有行人图像的视频,然后对视频提取帧,对于视频帧图像采用人工标注或算法识别的方式进行人体检测及标注来完成的。行人再识别数据集中包含了跨背景、跨时间、不同拍摄角度下、各种不同姿势的行人图片,如下图所示。

在这里插入图片描述

3.2 Person REID

3.2.1 算法原理

给定N个不同的行人从不同的拍摄视角的无重叠视域摄像机捕获的图像集合,行人再识别的任务是学习一个模型,该模型可以尽可能减小行人姿势和背景、光照等因素带来的影响,从而更好地对行人进行整体上的描述,更准确地对不同行人图像之间的相似度进行衡量。

我这里使用注意力相关的特征的卷积神经网络。该基础卷积神经网络架构可以由任何卷积神经网络模型代替,例如,VGG-19,ResNet-101。

该算法的核心模块在于注意力学习模型。

3.2.2 算法流程图

在这里插入图片描述

4 实现效果

在多行人场景下,对特定行人进行寻找
在这里插入图片描述

5 部分代码

import argparseimport timefrom sys import platformfrom models import *from utils.datasets import *from utils.utils import *from reid.data import make_data_loaderfrom reid.data.transforms import build_transformsfrom reid.modeling import build_modelfrom reid.config import cfg as reidCfgdef detect(cfg,data,weights,images='data/samples',  # input folderoutput='output',  # output folderfourcc='mp4v',  # video codecimg_size=416,conf_thres=0.5,nms_thres=0.5,dist_thres=1.0,save_txt=False,save_images=True):# Initializedevice = torch_utils.select_device(force_cpu=False)torch.backends.cudnn.benchmark = False  # set False for reproducible resultsif os.path.exists(output):shutil.rmtree(output)  # delete output folderos.makedirs(output)  # make new output folder############# 行人重识别模型初始化 #############query_loader, num_query = make_data_loader(reidCfg)reidModel = build_model(reidCfg, num_classes=10126)reidModel.load_param(reidCfg.TEST.WEIGHT)reidModel.to(device).eval()query_feats = []query_pids  = []for i, batch in enumerate(query_loader):with torch.no_grad():img, pid, camid = batchimg = img.to(device)feat = reidModel(img)         # 一共2张待查询图片,每张图片特征向量2048 torch.Size([2, 2048])query_feats.append(feat)query_pids.extend(np.asarray(pid))  # extend() 函数用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。query_feats = torch.cat(query_feats, dim=0)  # torch.Size([2, 2048])print("The query feature is normalized")query_feats = torch.nn.functional.normalize(query_feats, dim=1, p=2) # 计算出查询图片的特征向量############# 行人检测模型初始化 #############model = Darknet(cfg, img_size)# Load weightsif weights.endswith('.pt'):  # pytorch formatmodel.load_state_dict(torch.load(weights, map_location=device)['model'])else:  # darknet format_ = load_darknet_weights(model, weights)# Eval modemodel.to(device).eval()# Half precisionopt.half = opt.half and device.type != 'cpu'  # half precision only supported on CUDAif opt.half:model.half()# Set Dataloadervid_path, vid_writer = None, Noneif opt.webcam:save_images = Falsedataloader = LoadWebcam(img_size=img_size, half=opt.half)else:dataloader = LoadImages(images, img_size=img_size, half=opt.half)# Get classes and colors# parse_data_cfg(data)['names']:得到类别名称文件路径 names=data/coco.namesclasses = load_classes(parse_data_cfg(data)['names']) # 得到类别名列表: ['person', 'bicycle'...]colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] # 对于每种类别随机使用一种颜色画框# Run inferencet0 = time.time()for i, (path, img, im0, vid_cap) in enumerate(dataloader):t = time.time()# if i < 500 or i % 5 == 0:#     continuesave_path = str(Path(output) / Path(path).name) # 保存的路径# Get detections shape: (3, 416, 320)img = torch.from_numpy(img).unsqueeze(0).to(device) # torch.Size([1, 3, 416, 320])pred, _ = model(img) # 经过处理的网络预测,和原始的det = non_max_suppression(pred.float(), conf_thres, nms_thres)[0] # torch.Size([5, 7])if det is not None and len(det) > 0:# Rescale boxes from 416 to true image size 映射到原图det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print results to screen image 1/3 data\samples\000493.jpg: 288x416 5 persons, Done. (0.869s)print('%gx%g ' % img.shape[2:], end='')  # print image size '288x416'for c in det[:, -1].unique():   # 对图片的所有类进行遍历循环n = (det[:, -1] == c).sum() # 得到了当前类别的个数,也可以用来统计数目if classes[int(c)] == 'person':print('%g %ss' % (n, classes[int(c)]), end=', ') # 打印个数和类别'5 persons'# Draw bounding boxes and labels of detections# (x1y1x2y2, obj_conf, class_conf, class_pred)count = 0gallery_img = []gallery_loc = []for *xyxy, conf, cls_conf, cls in det: # 对于最后的预测框进行遍历# *xyxy: 对于原图来说的左上角右下角坐标: [tensor(349.), tensor(26.), tensor(468.), tensor(341.)]if save_txt:  # Write to filewith open(save_path + '.txt', 'a') as file:file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))# Add bbox to the imagelabel = '%s %.2f' % (classes[int(cls)], conf) # 'person 1.00'if classes[int(cls)] == 'person':#plot_one_bo x(xyxy, im0, label=label, color=colors[int(cls)])xmin = int(xyxy[0])ymin = int(xyxy[1])xmax = int(xyxy[2])ymax = int(xyxy[3])w = xmax - xmin # 233h = ymax - ymin # 602# 如果检测到的行人太小了,感觉意义也不大# 这里需要根据实际情况稍微设置下if w*h > 500:gallery_loc.append((xmin, ymin, xmax, ymax))crop_img = im0[ymin:ymax, xmin:xmax] # HWC (602, 233, 3)crop_img = Image.fromarray(cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB))  # PIL: (233, 602)crop_img = build_transforms(reidCfg)(crop_img).unsqueeze(0)  # torch.Size([1, 3, 256, 128])gallery_img.append(crop_img)if gallery_img:gallery_img = torch.cat(gallery_img, dim=0)  # torch.Size([7, 3, 256, 128])gallery_img = gallery_img.to(device)gallery_feats = reidModel(gallery_img) # torch.Size([7, 2048])print("The gallery feature is normalized")gallery_feats = torch.nn.functional.normalize(gallery_feats, dim=1, p=2)  # 计算出查询图片的特征向量# m: 2# n: 7m, n = query_feats.shape[0], gallery_feats.shape[0]distmat = torch.pow(query_feats, 2).sum(dim=1, keepdim=True).expand(m, n) + \torch.pow(gallery_feats, 2).sum(dim=1, keepdim=True).expand(n, m).t()# out=(beta∗M)+(alpha∗mat1@mat2)# qf^2 + gf^2 - 2 * qf@gf.t()# distmat - 2 * qf@gf.t()# distmat: qf^2 + gf^2# qf: torch.Size([2, 2048])# gf: torch.Size([7, 2048])distmat.addmm_(1, -2, query_feats, gallery_feats.t())# distmat = (qf - gf)^2# distmat = np.array([[1.79536, 2.00926, 0.52790, 1.98851, 2.15138, 1.75929, 1.99410],#                     [1.78843, 1.96036, 0.53674, 1.98929, 1.99490, 1.84878, 1.98575]])distmat = distmat.cpu().numpy()  # : (3, 12)distmat = distmat.sum(axis=0) / len(query_feats) # 平均一下query中同一行人的多个结果index = distmat.argmin()if distmat[index] < dist_thres:print('距离:%s'%distmat[index])plot_one_box(gallery_loc[index], im0, label='find!', color=colors[int(cls)])# cv2.imshow('person search', im0)# cv2.waitKey()print('Done. (%.3fs)' % (time.time() - t))if opt.webcam:  # Show live webcamcv2.imshow(weights, im0)if save_images:  # Save image with detectionsif dataloader.mode == 'images':cv2.imwrite(save_path, im0)else:if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfps = vid_cap.get(cv2.CAP_PROP_FPS)width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (width, height))vid_writer.write(im0)if save_images:print('Results saved to %s' % os.getcwd() + os.sep + output)if platform == 'darwin':  # macosos.system('open ' + output + ' ' + save_path)print('Done. (%.3fs)' % (time.time() - t0))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help="模型配置文件路径")parser.add_argument('--data', type=str, default='data/coco.data', help="数据集配置文件所在路径")parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='模型权重文件路径')parser.add_argument('--images', type=str, default='data/samples', help='需要进行检测的图片文件夹')parser.add_argument('-q', '--query', default=r'query', help='查询图片的读取路径.')parser.add_argument('--img-size', type=int, default=416, help='输入分辨率大小')parser.add_argument('--conf-thres', type=float, default=0.1, help='物体置信度阈值')parser.add_argument('--nms-thres', type=float, default=0.4, help='NMS阈值')parser.add_argument('--dist_thres', type=float, default=1.0, help='行人图片距离阈值,小于这个距离,就认为是该行人')parser.add_argument('--fourcc', type=str, default='mp4v', help='fourcc output video codec (verify ffmpeg support)')parser.add_argument('--output', type=str, default='output', help='检测后的图片或视频保存的路径')parser.add_argument('--half', default=False, help='是否采用半精度FP16进行推理')parser.add_argument('--webcam', default=False, help='是否使用摄像头进行检测')opt = parser.parse_args()print(opt)with torch.no_grad():detect(opt.cfg,opt.data,opt.weights,images=opt.images,img_size=opt.img_size,conf_thres=opt.conf_thres,nms_thres=opt.nms_thres,dist_thres=opt.dist_thres,fourcc=opt.fourcc,output=opt.output)

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/673350.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

已解决:tpm2_createpriimay: command not found

出现错误如下&#xff1a; ERROR: Could not change hierarchy for Owner. TPM Error:0x9a2 ERROR: Could not change hierarchy for Endorsement. TPM Error:0x9a2 ERROR: Could not change hierarchy for Lockout. TPM Error:0x98e ERROR: Unable to run tpm2_takeownership…

github使用问题汇总

1. Permission denied 1.1. 问题描述 Permission denied (publickey). fatal: Could not read from remote repository. 1.2. 解决方法 生成公钥 ssh-keygen -t ed25519 -C "your_emailexample.com" 点击回车三次 Generating public/private ed25519 key pair. …

Idea:Idea导入Module、子Module的方式及其可能遇到的问题

参考&#xff1a;https://blog.csdn.net/qjyws/article/details/127617536 1.父module的maven添加sub module xxx-module-xxx-api xxx-module-xxx-biz 2.project structure–>import module–>添加sub module 3.maven–>Reload project即可

为什么大模型需要向量数据库?

AIGC 时代万物都可以向量化&#xff0c;向量化是 LLM 大模型以及 Agent 应用的基础。 比如&#xff1a;爆火的 Google 大模型 Gemini 1.0 原生支持的多模态&#xff0c;在预训练的时候就是把文本、图片、音频、视频等多模态先进行 token 化&#xff0c;然后构建一维的“语言”…

深掘开源安全需求,破解开源治理难题

当下&#xff0c;中国金融科技行业在数字支付、数字信贷、金融风控等领域取得了很多创新成果&#xff0c;大幅提升了金融数字化和智能化水平&#xff0c;已经在金融科技的全球竞争中走在前列。 在此进程中&#xff0c;开源技术发挥了不可或缺的重要作用&#xff0c;根据我国金…

双非本科准备秋招(19.2)—— 设计模式之保护式暂停

一、wait & notify wait能让线程进入waiting状态&#xff0c;这时候就需要比较一下和sleep的区别了。 sleep vs wait 1) sleep 是 Thread 方法&#xff0c;而 wait 是 Object 的方法 2) sleep 不需要强制和 synchronized 配合使用&#xff0c;但 wait 强制和 s…

航芯ACM32G103开发板评测 06 1.28圆形屏幕 LVGL移植

航芯ACM32G103开发板评测 06 1.28圆形屏幕 LVGL移植 软硬件平台 航芯ACM32G103开发板1.28寸圆形彩色TFT显示屏高清IPS 模块240X240 SPI接口 GC9A01驱动芯片LVGL V8.3.1源码 LVGL LVGL&#xff08;Light and Versatile Graphics Library&#xff09;是一个免费的开源图形库&…

微信小程序实现吸顶、网格、瀑布流布局

微信小程序开发通常是在webview模式下编写&#xff0c;但是对小程序的渲染性能有一定的追求&#xff0c;就需要使用Skyline模式进行渲染&#xff0c;同时在这种模式下有也有一些特殊的组件&#xff0c;可以轻松的实现想要的效果&#xff0c;本文将介绍在Skyline模式下如何实现吸…

【iOS ARKit】人形提取

为解决人形分离和深度估计问题&#xff0c;ARKit 新增加了 Segmentation Buffer&#xff08;人体分隔缓冲区&#xff09;和Estimated Depth Data Buffer&#xff08;深度估计缓冲区&#xff09;两个缓冲区。人体分隔缓冲区作用类似于图形渲染管线中的 Stencil Buffer&#xff0…

进程状态 | 僵尸进程 | 孤儿进程 | 前台后台进程 | 守护进程

文章目录 1.进程的三种基本状态2.Linux中进程状态查看2.1.进程检测脚本2.2.各种状态查看 3.孤儿进程4.前台、后台、守护进程 1.进程的三种基本状态 进程的在系统当中是走走停停的&#xff0c;「运行 - 暂停 - 运行」的活动规律&#xff1b;进程在活动期间的三种状态&#xff1…

【leetcode题解C++】450.删除二叉搜索树中的节点 and 669.修剪二叉搜索树 and 108.将有序数组转换为二叉搜索树

450. 删除二叉搜索树中的节点 给定一个二叉搜索树的根节点 root 和一个值 key&#xff0c;删除二叉搜索树中的 key 对应的节点&#xff0c;并保证二叉搜索树的性质不变。返回二叉搜索树&#xff08;有可能被更新&#xff09;的根节点的引用。 一般来说&#xff0c;删除节点可…

【Langchain+Streamlit】旅游聊天机器人

【LangchainStreamlit】打造一个旅游问答AI-CSDN博客 项目线上地址&#xff0c;无需openai秘钥可直接体验&#xff1a;http://101.33.225.241:8502/ github地址&#xff1a;GitHub - jerry1900/langchain_chatbot: langchainstreamlit打造的一个有memory的旅游聊天机器人&…

js逆向-某东验证码逆向分析

声明 本文仅供学习参考&#xff0c;如有侵权可私信本人删除&#xff0c;请勿用于其他途径&#xff0c;违者后果自负&#xff01; 如果觉得文章对你有所帮助&#xff0c;可以给博主点击关注和收藏哦&#xff01; 插句个人内容&#xff1a;本人最近正在找工作&#xff0c;工作城…

基于SpringBoot的美妆管理系统

文章目录 项目介绍主要功能截图&#xff1a;部分代码展示设计总结项目获取方式 &#x1f345; 作者主页&#xff1a;超级无敌暴龙战士塔塔开 &#x1f345; 简介&#xff1a;Java领域优质创作者&#x1f3c6;、 简历模板、学习资料、面试题库【关注我&#xff0c;都给你】 &…

CS50x 2024 - Lecture 1 - C

本周学习C语言&#xff0c;重点是函数、变量、条件语句和循环。 05:11介绍了编程语言的转换过程&#xff0c;从源代码到机器码&#xff0c;以及编译器的作用。 编译器是将一种语言翻译成另一种语言的程序 09:18使用CS50.dev进行编程&#xff0c;介绍了VS Code和命令行界面的…

LeetCode Python - 1.两数之和

文章目录 题目答案运行结果 题目 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一个元素在答案里不能…

数据结构——算法的时间复杂度和空间复杂度

1、算法效率 1.1如何衡量一个算法的好坏&#xff1f; 比如我们最熟悉的斐波那契数列 long long Fib(int N) {if(N < 3)return 1;return Fib(N-1) Fib(N-2); } 上面的斐波那契数列使用递归实现&#xff0c;看起来非常的简洁&#xff0c;那么代码一定是越简洁越好么&…

Python CSV文件读取和写入

本文主要为Python 实现CSV文件读取和写入操作。 CSV文件写入和读取 因为没有现成的csv文件&#xff0c;所以csv的顺序为先写入后读取。 写入 创建csv文件并把数据写入&#xff0c;有两种实现方式&#xff1a;直接插入所有行和插入单行。 示例如下&#xff1a; import csv i…

pycharm 配置 conda 新环境

1. conda 创建新环境 本章利用pycharm将conda新建的环境载入进去 关于conda的下载参考上一章博文&#xff1a;深度学习环境配置&#xff1a;Anaconda 安装和 pip 源 首先利用conda 新建虚拟环境 这里按 y 确定 安装好如下&#xff1a;这里两行命令代表怎么激活和关闭新建的虚…

顺序表、链表相关OJ题(2)

创作不易&#xff0c;友友们给个三连吧&#xff01;&#xff01; 一、旋转数组&#xff08;力扣&#xff09; 经典算法OJ题&#xff1a;旋转数组 思路1&#xff1a;每次挪动1位&#xff0c;右旋k次 时间复杂度&#xff1a;o(N^2) 右旋最好情况&#xff1a;k是n的倍数…