解放双手!ChatGPT助力编写JAVA框架!

摘要

本文介绍了使用 ChatGPT逐步创建 一个简单的Java框架,包括构思、交流、深入优化、逐步完善和性能测试等步骤。

亲爱的Javaer们,在平时编码的过程中,你是否曾想过编写一个Java框架去为开发提效?但是要么编写框架时感觉无从下手,不知道从哪开始。要么有思路了后对某个功能实现的技术细节不了解,空有想法而无法实现。如果你遇到了这些问题,看完这篇文章你也能用ChatGPT编写一个简单的JAVA框架。

构思清晰

首先,你需要明确你的框架要解决什么问题,具有什么特性。这将有助于ChatGPT更好的理解你的需求。

例如:我在一个前后端分离的需求中发现有太多的枚举类的描述需要给前端返回。传统的方式是后端根据枚举类的映射,每个枚举值编写代码映射成描述给前端返回。但这次需求需要给前端返回的枚举描述太多了。这让我和我的小伙伴们感觉无从下手。所以我就思考能否编写一个注解自动帮我们扫描这些枚举类,然后生成key和描述的map,最终放到容器中去呢?

解决问题:解决前后端分离过程中需要手动编写代码将枚举key的描述映射给前端。

特性:框架有一个注解,注解有三个字段name,key,和desc,修饰在枚举类上。框架需提供外部获取枚举map的接口。

与 ChatGPT 交流

启动 ChatGPT,向它讲述你的构想和需求。它可以为你生成初始代码、提供结构建议,甚至帮你处理一些逻辑。

想好了框架要解决的问题和框架的特性之后,接下来就要将框架要解决的问题和特性给总结成一段文字发给ChatGPT。



chatgpt根据我的需求大概生成了下框架的demo版本。可以看到和我设想的还是有些区别的,我想是将枚举放在类上。然后枚举的属性有name,key,和desc。

name:代表枚举map在最外层map中的key。

key:代表枚举的key或值字段。

desc:代表枚举的描述字段。





深入互动

与 ChatGPT 进行更深入的交流,询问它关于代码优化、异常处理等方面的建议。它可以帮你找到更好的解决方案。

接下来需要与ChatGPT进一步交流,让ChatGPT将之前生成的代码进行优化。

EnumInfo注解优化前:



优化后:



逐步完善

逐步引导chatgpt完善框架

在 ChatGPT 的帮助下,逐步完善你的框架。亲自动手编写代码,与 ChatGPT 一起探讨每个细节。

最后可以和ChatGPT一步步交流,让它帮你构建一个完整的框架。



最终慢慢与ChatGPT不断对话迭代之后将框架的核心类生成,迭代过程由于太长故省略。

框架核心类说明

在ChatGPT给出核心代码之后,我参考Spring模块设计最终初版框架类如下:

PackageScanner:用于扫描给定包中带有指定注解的类的实用工具类。

PropertiesUtils:提供操作属性文件的实用方法的工具类。

EnumInfo:用于标注枚举类的注解,指定枚举项的名称、key 字段和 desc 字段信息。 通过在枚举类上添加该注解,可以为枚举项建立索引映射,并指定用于查找 key 和 desc 的字段名称。

EnumContext:枚举上下文类,用于管理枚举定义信息并提供获取枚举信息的方法。

EnumContextFactory:枚举上下文工厂类,用于创建和获取单例的枚举上下文对象。

EnumDefinition:表示枚举定义的类,用于存储枚举类的信息。

EnumDefinitionRegistry:枚举定义注册接口,用于注册、查询和管理枚举定义。

DefaultEnumFactory:默认的枚举定义工厂类,实现了 EnumDefinitionRegistry 接口。



看到这使用ChatGPT编写框架部分已经完成了。大件可以使用chatgpt开发自己的JAVA框架。但要想把框架实际应用到生产还需要做一些收尾流程。

框架使用测试

在于ChatGPT交流,完成框架编写之后需要将框架应用到实际项目中。

笔者业务系统管理端在进行前后端分离的过程中,研发们发现有许多枚举类对应的枚举描述需要给前端返回。

1)一开始设想的是每个枚举类都写代码给前端封装返回文字。但是由于笔者业务系统配置项过多,每个配置项都写代码太过麻烦。

2)于是研发们想能否使用一个统一的接口给前端返回枚举类对应的描述,前端只需要输入枚举类名称就可以获得对应的枚举key和描述的映射关系。

于是我们创建了一个接口,定义了一个Map对象给前端返回枚举类的key和描述的对应关系。但是由于笔者业务系统的渠道配置还是太多了。使用这种方式我们需要初始化这个Map。初始化Map代码如下:

public HashMap<String, Map<Integer, String>> initEnumMap() {enumMap = new HashMap<>();enumMap.put("前端获取枚举map的key", XXXEnum.getEnumMap());enumMap.put("前端获取枚举map的key", XXXEnum.getEnumMap());enumMap.put("前端获取枚举map的key", XXXEnum.getEnumMap());...return enumMap;
}

可见,每新增一个枚举类。我们都需要在静态代码块中将映射关系放入map中。并且枚举类需要新增一个获取key和描述的映射关系方法。这样还是太麻烦了。并且后续新增映射关系还得更改这个类的代码。

能否将map初始化的步骤和枚举类创建map的步骤省略呢?

3)于是我们设想定义一个注解。使用这个注解标记的类,框架扫描这些类。并生成获取枚举key和描述的映射关系的方法。最终完成初始化Map的过程。对外只提供获取总枚举Map的方法即可。用户无需关心Map如何构建。使用这个框架之后,笔者业务系统这个接口的代码如下:

/*** 获取枚举
** @param enumKey 枚举key* @return 返回值 Map<Integer,String>;code,描述
*/
@RequestMapping("/getEnum")
public Result<Map<String, Map<String, String>>> getEnum(String enumKey) {try {// 获取枚举上下文对象EnumContext enumContext = EnumContextFactory.getEnumContext();// 获取枚举mapnewEnumMap = enumContext.getEnumIndexMap();// buid映射从ducc中获取,所以需要手动设置newEnumMap.put(BUID.getKey(), getBuIdMap());} catch (Exception e) {log.error("获取枚举map出错!enumKey:{}", enumKey, e);return Result.createFail(e.getMessage());}// 如果枚举key为空则返回全部if (StringUtils.isBlank(enumKey)) {return Result.createWithSuc(newEnumMap);}// 如果枚举key不为空则返回指定值Map<String, Map<String, String>> resultMap = new HashMap<>();resultMap.put(enumKey, newEnumMap.get(enumKey));return Result.createWithSuc(resultMap);
}

4)注解类代码如下:

在这举个测试枚举类的例子

@EnumInfo(name = "StatusEnum", key = "code", desc = "description")
public enum StatusEnum {SUCCESS(200, "Success"),ERROR(500, "Error");private final int code;private final String description;StatusEnum(int code, String description) {this.code = code;this.description = description;}public int getCode() {return code;}public String getDescription() {return description;}
}

以后新增一个枚举类只需要标记@EnumInfo(name = "StatusEnum", key = "code", desc = "description")。将枚举类的name ,key字段名称和描述字段名称指定即可。无需修改接口的代码即可给前端返回该枚举的key和描述的映射关系。极大的减少了研发联调时间及测试回归时间。

框架性能压测

框架应用到实际生产项目中,需要对ChatGPT辅助编写的框架进行充分的测试验证。同时也要对框架的性能进行测试,知道框架的瓶颈。常见的接口压测工具有LoadRunner和Apache JMeter等。任选一种压测工具进行压测即可。

笔者将框架应用到项目中对外暴露了一个接口,该接口在4C4G机器配置下,单机最高可支持1000QPS,在1000QPS下,单机CPU使用率达到30%,系统负载接近0.9,内存使用率与压测前无明显变化。

总结

本文演示了如何使用ChatGPT逐步创建Java框架,解决前后端分离中的问题。以上使用ChatGPT逐步完善框架的经验分享给大家,希望对各位有所帮助。

作者:京东零售交易团队 王凤玺

来源:京东零售技术 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/668757.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tauri:相比Electron,还有很长路要走的。

一、Tauri是什么 Tauri是一个开源的框架&#xff0c;用于构建跨平台的桌面应用程序。它允许开发者使用Web技术&#xff08;如HTML、CSS和JavaScript&#xff09;来构建高性能的本地应用程序&#xff0c;同时提供了访问底层操作系统功能的能力。 Tauri的设计目标是提供一种简单…

第97讲:MHA高可用集群模拟主库故障以及修复过程

文章目录 1.分析主库故障后哪一个从库会切换为主库2.模拟主库故障观察剩余从库的状态2.1.模拟主库故障2.3.当前主从架构 3.修复故障的主库3.1.修复主库3.2.当前主从架构3.3.恢复MHA 1.分析主库故障后哪一个从库会切换为主库 在模拟MHA高可用集群主库故障之前&#xff0c;我们先…

【JavaSE篇】——抽象类和接口

目录 &#x1f393;抽象类 &#x1f388;抽象类语法 &#x1f388;抽象类特性 &#x1f388;抽象类的作用 &#x1f393;接口 &#x1f388;语法规则 &#x1f388;接口特性 &#x1f388;接口使用(实现USB接口&#xff09; &#x1f388;实现多个接口 &#x1f388;…

力扣刷题之旅:进阶篇(一)

力扣&#xff08;LeetCode&#xff09;是一个在线编程平台&#xff0c;主要用于帮助程序员提升算法和数据结构方面的能力。以下是一些力扣上的入门题目&#xff0c;以及它们的解题代码。 --点击进入刷题地址 题目1&#xff1a;三数之和 题目描述&#xff1a; 给定一个包含n个…

代码随想录算法训练营第41天 | 343.整数拆分 + 96.不同的二叉搜索树

今日任务 343. 整数拆分 96.不同的二叉搜索树 343.整数拆分 - Medium 题目链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 给定一个正整数 n &#xff0c;将其拆分为 k 个 正整数 的和&#xff08; k > 2 &#xff09;&#xff0…

springboot+vue实现excel导出

后端 导入pom依赖 <dependency>x<groupId>cn.afterturn</groupId><artifactId>easypoi-spring-boot-starter</artifactId><version>4.2.0</version> </dependency> Entity实体类 这里以User为例&#xff0c;可按照自己实际…

vulhub中AppWeb认证绕过漏洞(CVE-2018-8715)

AppWeb是Embedthis Software LLC公司负责开发维护的一个基于GPL开源协议的嵌入式Web Server。他使用C/C来编写&#xff0c;能够运行在几乎先进所有流行的操作系统上。当然他最主要的应用场景还是为嵌入式设备提供Web Application容器。 AppWeb可以进行认证配置&#xff0c;其认…

【CSS】css如何实现字体大小小于12px?

【CSS】css如何实现字体大小小于12px? 问题解决方案transform: scale(0.5)&#xff08;常用&#xff09;SVG 矢量图设置text 问题 文字需要显示为12px&#xff0c;但是小于12px的&#xff0c;浏览器是显示不来的 解决方案 transform: scale(0.5)&#xff08;常用&#xff0…

树莓派-Ubuntu22.04

树莓派 1 安装Ubuntu系统2 ssh登录3 配置3.1 安装软件3.2 换源3.3 安装桌面3.4 开机脚本 1 安装Ubuntu系统 通过制作sdk&#xff0c;使系统在sdk中运行&#xff1a; 下载制作软件&#xff1a;https://www.raspberrypi.com/software/ 下载Ubuntu镜像&#xff1a;https://cn.ub…

【Day40】代码随想录之动态规划_343. 整数拆分_96.不同的二叉搜索树

文章目录 动态规划理论基础动规五部曲&#xff1a;出现结果不正确&#xff1a; 343. 整数拆分96.不同的二叉搜索树 动态规划理论基础 动规五部曲&#xff1a; 确定dp数组 下标及dp[i] 的含义。递推公式&#xff1a;比如斐波那契数列 dp[i] dp[i-1] dp[i-2]。初始化dp数组。…

基于Springboot开发的JavaWeb作业查重系统[附源码]

基于Springboot开发的JavaWeb作业查重系统[附源码] &#x1f345; 作者主页 央顺技术团队 &#x1f345; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; &#x1f345; 文末获取源码联系方式 &#x1f4dd; &#x1f345; 查看下方微信号获取联系方式 承接各种定制系统 &a…

zlib交叉编译(rv1126)

目录 1.下载 2.解压 3.配置 4.编译 1.下载 1)下载地址 zlib Home Site 2)下载tar.gz版本 下载该版本。 2.解压 1)解压到某个文件夹

探索设计模式的魅力:从单一继承到组合模式-软件设计的演变与未来

设计模式专栏&#xff1a;http://t.csdnimg.cn/nolNS 在面对层次结构和树状数据结构的软件设计任务时&#xff0c;我们如何优雅地处理单个对象与组合对象的一致性问题&#xff1f;组合模式&#xff08;Composite Pattern&#xff09;为此提供了一种简洁高效的解决方案。通过本…

简单的JavaScript去下载转换为Base64的PDF文件

新建一个文件&#xff0c;内容填写如下&#xff0c;然后保存为 .html 类型的文件 再用浏览器打开&#xff0c;就会是下面这样子&#xff1a; 图一红色textarea里面&#xff0c;可以将PDF文件转换成BASE64位后的内容贴进去&#xff0c;点击下载时&#xff0c;就可以直接下载成PD…

进程的基本概念、查看、创建

1. 进程的概念 概念&#xff1a;加载到内存的程序/正在运行的程序称为内存。 我们在玩电脑的时候是可以启动多个程序的&#xff0c;比如边听歌边写博客&#xff0c;根据上篇文章我们知道肯定要将多个.exe文件加载到内存中&#xff0c;作为操作系统肯定是要管理这多个加载到内存…

开源大数据集群部署(十)Ranger usersync部署

作者&#xff1a;櫰木 ranger usersync部署 解压包 [roothd1.dtstack.com ranger]# pwd /opt/ranger [roothd1.dtstack.com ranger]# tar -zxvf ranger-2.3.0-usersync.tar.gz -C /opt/ [roothd1.dtstack.com ranger]# cd ranger-2.3.0-usersync修改配置install.properties…

小白Linux学习笔记-Linux开机启动流程

Linux 开机启动流程 文章目录 Linux 开机启动流程启动流程概览详细讲解开机软件 —— BIOS、Grub名词解释流程解释BIOS 开机文档 —— menu.lst、grub.confGrub 配置文档流程解释 init 程序流程解释init 执行的相关文件 run-level(启动等级) 相关的命令实验rhel6 单用户模式修改…

改变终端安全的革命性新兴技术:自动移动目标防御技术AMTD

自动移动目标防御技术通过启用终端配置的自适应防御来改变终端检测和响应能力。产品领导者可以实施AMTD来确保实时威胁响应&#xff0c;并减少检测和响应安全威胁所需的时间。 主要发现 通过动态修改系统配置、软件堆栈或网络特征&#xff0c;自动移动目标防御&#xff08;AMTD…

MQ,RabbitMQ,SpringAMQP的原理与实操

MQ 同步通信 异步通信 事件驱动优势&#xff1a; 服务解耦 性能提升&#xff0c;吞吐量提高 服务没有强依赖&#xff0c;不担心级联失败问题 流量消峰 ​ 小结: 大多情况对时效性要求较高&#xff0c;所有大多数时间用同步。而如果不需要对方的结果&#xff0c;且吞吐…

性能实测:分布式存储 ZBS 与集中式存储 HDS 在 Oracle 数据库场景表现如何

作者&#xff1a;深耕行业的 SmartX 金融团队 金鑫 在金融客户的基础架构环境中&#xff0c;HDS 是一种被广泛使用的存储解决方案。作为集中式存储的代表之一&#xff0c;HDS 拥有高性能、高可用性和可扩展性的企业级存储特点&#xff0c;适用于实时数据处理、虚拟化和灾难备份…