IT工单治理野史:由每周最高150+治理到20+ | 京东物流技术团队

背景

相信不少人都值过班当过小秘吧,每天都要在线排查与解答各种各样来自IT或"单聊"的问题,同时还要针对每个问题进行"复盘"分析,在完善系统、提高体验的同时挖掘出其中的雷点,防止某一天突然"爆炸"造成不可控的局面。

我们这边在值班小秘每日进行线上问题排查、解答与跟踪,工单量越大耗费的精力和成本就越高。周而复始了一段时间之后,发现IT工单量不但没有得到明显的降低,而且还很不稳定,一周最高可达150个,效果不是很理想。于是此项被单独成立为一个目标,而我被指派为此项负责人,会在每周对上一周的IT工单逐个进行分析复盘,其中治理的具体思路和过程如下。

在此之前,我们先来看一下比较振奋人心的实战效果吧,来吧,上图

新方案实践

1.问题分类治理

在进行了一段时间跟踪治理之后,发现很多问题在本质上都是同一类问题,如果是按场景、功能模块、操作节点等维度进行归类,同一种类别算成是一个工单的话,那么这个量级至少是一半以下,基于上述发现,我们基于这样一个原则来进行问题归类以及各类别的治理方案:优先分析、跟踪治理优先级高的类别问题,优先级规则如下(由高到低)

•影响财务结算类问题(涉及到计费模块类的功能异常)

•影响系统稳定类问题(系统缺陷、BUG等)

•产品场景异常类问题(场景丢失、场景越界等)

•系统体验类问题(并发、核心实操类功能性能低下、提示术语存在歧义等)

•其余非咨询类问题量级由高到低

•其他问题

基于以上优先级规则,我们的归类维度以及对应治理方案主要如下(出现频率高的类别)

•系统类问题

◦系统缺陷类(并发、业务交叉等)–>挖出根因并修复,而不是简单的更改数据

◦系统BUG类(代码逻辑错误)–>多方核实出正确逻辑并修复上线

•产品类问题–>多方排查核实并由产品和业务牵头进行业务场景梳理落实需求

◦场景丢失

◦场景越界

•体验类问题

◦功能慢需要等待–>进行性能优化

◦提示语歧义不明确–>展示信息纠正抽象概括类名词未具体语义名词、多业务同名名词进行区分改名、实操提示语中明确具体因由和解决方案等

◦操作繁杂–>根据具体场景进行简化:能自动带出的信息自动带出、能简化步骤的简化步骤、能进行合并的进行合并等

◦操作口隐藏太深–>根据对应场景进行功能模块的聚合

◦业务逻辑反人类–>重新核实业务逻辑并进行优化

◦重要信息没地儿查–>现场调研收集吐槽点、核实分析后产出需求或一些简单信息直接在对应模块页面上展示出来

•业务实操类–>多次培训

◦业务规则卡控

◦基础信息配置卡控

◦异步逻辑无感

•咨询类–>多次培训

◦业务规则咨询

◦协助查询数据信息

◦系统使用教程

◦系统中一些业务词汇或数据的含义解释

◦对应职责对接人员名单

•其他类

◦历史问题(N年没有的业务突然来量了,系统逻辑早已面目全非)–>重新核实业务逻辑并进行优化

◦数据类问题(N年前的数据已经结转走了)–>提供拉回功能和权限控制

经过上述的方案进行治理了一段时间之后,需要产品、研发、业务介入跟进开发落实类的问题是越来越少,系统的稳定性提高不少。不过呢IT单量虽然整体有所下降,但是并没有达到预期,因由就是优先级高的类别问题占比总体其实并不大,而除此之外的其他类问题占比最大的就是咨询和实操类别的问题,而这两类占比更高的是咨询类问题(几乎是一多半),所以我们又想出了接入智能问答机器人的方案。

2.接入智能问答机器人

基于上述经历呢,我们决定基于最小成本和简易问答场景进行接入一款智能问答机器人进行尝试,经过与多方沟通最终采用慧言机器人:对比过程这里不再详述,各个机器人平台都有对应的教程文档和对接人,随时可看与咨询,大体原则是:接入成本、使用场景两个主要要素。

接入前我们整理了下述类别的数据,并会定时更新

•咨询类问题与答案–>原材料来源于日常值班记录和IT工单数据

◦业务规则咨询

◦系统使用咨询

◦名词解释咨询

◦上下游关联场景咨询

◦其他零散类咨询

•系统教程类文档

•上下游交互类文档(接口、MQ等)

•各系统对接人/值班人文档

风风火火一顿整理后同步后,就开始尝试进行推进,在日常工作中、对应的群里以及一些联手小伙伴们都会时不时地进行宣导,一段时间下来后发现实际效果确实是差强人意,IT单总量几乎是没有什么大的变化,后来经过私下调研一些使用者的反馈后,大体总结出以下几个原因

•不够便捷,需要弹出京me进行咨询

•命中率不高(是个难题)

•推广受限(使用人员:系统操作期间非必要不会打开京me,基本上体验一次后就望而却步了)

基于上述原因和结果,我们放弃了此种方案,开始着想其他方案,下图是最近日期的一些使用数据统计

3.知识库前置功能

基于上述两种方案的经历后,日常值班和IT单的类型占比就大头的就是一些偏向咨询和实操类的工单了,挑选治理期间其中一周明细进行二次分析,其分布图如下

出去产研侧类问题,我们能看看到图中蓝色和绿色部分就是所谓的咨询和用户类问题,而这两类问题中可以粗略拆为基础信息配置和业务操作类,基于此种特色我们又想出了一种方案:进行知识库前置

这里我来解释一下知识库前置是个啥东东哈,所谓的知识库前置是一种思想:在咨询前通过配置好的知识库进行拦截指引,即在对应实操上给出具体解决方案、业务页面上给出具体指导手册,达到具体问题/业务具体指引的效果,方便系统使用者自行快速地解决遇到的问题。

思想听起来挺高大上的哈,其实实现起来就比较简单了,我们这边的系统是传统的web网站系统

•首先在知识库平台上进行上述方案2中整理好的方案导入进去,然后拿到每个知识库的id编号

•在埋点系统上新创建一批空的埋点站位,拿到对应埋点的ID

•在系统中新增一张表用来保存知识库ID、埋点ID、访问URL/业务异常码关系(当然还有一些兼容前台体验的属性配置:这里不再赘述)

•通过新增spirngMVC的拦截器进行解析其中的页面uri或业务异常码,在库中进行关系检索并拿到具体配置的知识库内容挂在/返回页面进行展示提醒

具体使用的展示效果图如下

实操同步交互的业务异常拦截方式:在提示业务异常的同时,会在对应的提示信息后边跟着一个上下跳动的“解决方案”字样(为了吸引注意让使用者去点击)

点击后效果如下图所示(弹窗中的内容都是自行编辑,此处抓取其中一个示例展示效果,并非对应上述的业务异常)

页面挂载的拦截方式:在对应页面上挂载此页面涉及到的业务功能和使用教程知识库(默认展示在页面的右下角,点击可进行拖拽:不影响页面使用或遮挡信息),点击后弹出上图所示效果的具体知识库内容,如下图

其实呢,说白了就是一个AOP切面的事情,一样的道理,但是这个效果确实有着显著的效果,通过下图中的知识库埋点点击数据可看到确实有人在使用,而本文最开始的IT单量统计折线图确实能够看到目前每周单量维持在20左右,相比最初的150、中间阶段的90上下,确实整体下降量非常明显

4.智能问答功能(目前处于试用阶段)

基于此种治理效果,基本上算是比较满意了(心里美滋滋),然而周而复始的值班进行在线解答与事后分析盘点,其实还是能看到咨询类的问题占比较多,纵横对比发现此时的咨询类问题提出人的所属部门很零散(销售、客服、运营、解决部、仓等等),问的问题也是“千奇百怪”,算是上述方案中的一些盲点区域了。基于此种特色,我们在想是否能够在系统中提供一个简易的问答检索功能来支持这些"边角"咨询类的问题的咨询,那么咱们说干就干。

•将此类问题人工分析抽象为问答模式数据

•将数据存储在ES进行保存于检索(问题字段采用IK分词器)

•采用NLP结合停用词过滤(一些自定义匹配过滤:比如特定的业务单号是需要过滤的等)进行特征词的提取

•采用TF-IDF+余弦相似度进行数据转为向量的训练与相似度匹配

•个性化加工包装(比如识别到规则识别出的一些特定业务模块,可根据用户录入的单号或其他业务数据,进行入库查询返回给客户带有业务数据的解决方案)

上述为此功能的粗略设计步骤,简易功能实现模式如下:责任链:es–>算法–>模块;工厂策略:算法

语料训练过程如下

通过开关和双套数据模型设计支持在线语料训练与检索并行

目前处于试用阶段,正在尝试推行,在系统上进行挂靠,同时在值班过程中也在推行,目前经过部分使用者的反馈看是有些效果,但是在单量上还未有所体现,可以随着推行时间的延长来看具体的效果,让我们拭目以待吧,效果图和使用记录如下所示

未来展望

接入chagpt,数据保密不会泄露,并且根据聊天记录自行进行思维训练更新与解答。

作者:京东物流 张小龙

来源:京东云开发者社区 自猿其说 Tech 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/668439.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

飞天使-k8s知识点12-kubernetes散装知识点1-架构有状态

文章目录 k8s架构图有状态和无状态服务 资源和对象对象规约和状态 资源的对象-资源的分类 k8s架构图 有状态和无状态服务 区分有状态和无状态服务有利于维护yaml文件 因为配置不同资源和对象 命令行yaml来定义对象对象规约和状态 规约 spec 描述对象的期望状态状态 status 对…

机器学习基础、数学统计学概念、模型基础技术名词及相关代码个人举例

1.机器学习基础 (1)机器学习概述 机器学习是一种人工智能(AI)的分支,通过使用统计学和计算机科学的技术,使计算机能够从数据中学习并自动改进性能,而无需进行明确的编程。它涉及构建和训练机器…

【Spring】Spring 对 Ioc 的实现

一、Ioc 控制反转 控制反转是一种思想 控制反转是为了降低程序耦合度,提高程序扩展力,达到 OCP 原则,达到 DIP 原则 控制反转,反转的是什么? 将对象的创建权利交出去,交给第三方容器负责 将对象和对象之…

Angular BaseView抽离页面公用属性

前言 如果有一系列的页面布局很类似,为了节省时间,我们可以把这些类似的页面所通用的属性和方法抽离成一个BaseView,让其它页面继承该基础页面,同时将一些经常改变的属性和差异的属性写到配置文件里。例如树容器初始时是否展开、…

什么是前端工程化,请举例说明

前端工程化 前端工程化的定义为什么需要前端工程化前端工程化的核心概念 模块化开发:组件化开发:规范化开发:自动化开发:持续集成 前端工程化的主要工具前端工程化的应用总结: 前端工程化 前端工程化的定义 前端工程…

从资深用户角度谈三款出色数据可视化工具

作为一名数据可视化领域的老用户,我接触过众多数据可视化产品,其中不乏佼佼者。今天,我想为大家介绍三款在我心目中颇具特色的数据可视化产品,它们分别是山海鲸可视化、Tableau和Power BI。 首先,让我们来谈谈山海鲸可…

STM32单片机的基本原理与应用(六)

串口测试实验 基本原理 在串口实验中,是通过mini_USB线搭建终端与电脑端(也可称终端,为做区分称电脑端)的“桥梁”,电脑端的串口调试助手通过mini_USB线向终端发送信息,由CH340芯片将USB接口进行转换&…

机器学习中常用的性能度量—— ROC 和 AUC

什么是泛化能力? 通常我们用泛化能力来评判一个模型的好坏,通俗的说,泛化能力是指一个机器学期算法对新样本(即模型没有见过的样本)的举一反三的能力,也就是学以致用的能力。 举个例子,高三的…

vulhub中Apache APISIX Dashboard API权限绕过导致RCE(CVE-2021-45232)

Apache APISIX是一个动态、实时、高性能API网关,而Apache APISIX Dashboard是一个配套的前端面板。 Apache APISIX Dashboard 2.10.1版本前存在两个API/apisix/admin/migrate/export和/apisix/admin/migrate/import,他们没有经过droplet框架的权限验证&…

今日早报 每日精选15条新闻简报 每天一分钟 知晓天下事 2月5日,星期一

每天一分钟,知晓天下事! 2024年2月5日 星期一 农历腊月廿六 1、 证监会:依法严厉打击操纵市场、恶意做空、内幕交易等重大违法行为。 2、 夜间高铁开行!多地火车站候车室开启通宵服务。 3、 气象台:5日晚至7日湘中以…

Prometheus部署监控报警

在容器环境中配置安装Prometheus部署企业微信容器报警Grafana展示 下载Prometheus (监控Server端) [rootPrometheus-Grafana prometheus]# mkdir /prometheus [rootPrometheus-Grafana prometheus]# docker run -d --name test -P prom/prometheus [ro…

数据与广告系列三十七:广告,商业化的高雅,中间商赚差价的无奈

作者黄崇远 『数据巢』 全文8872字 题图ssyer.com “ 商业化广告,看着其技术复杂又富有挑战性,业务覆盖行业的方方面面又似乎不可或缺,但究其本质,依然是中间商赚差价的生意而已,但细究其背后的深层原因,却…

QT QDialog 中的按钮,如何按下后触发 accepted 消息?

QT 作为跨平台的系统,对话框并没有采用 Windows API 那种模式,通过返回 mrOK、mrCancel 等结果告诉调用方结果,而是采用了 accepted、rejected 等信号确定执行结果。下面介绍几种出发这些信号的方法。 1. 在按钮的 clicked 槽函数中触发 acc…

深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之行存(一)

在当今的大数据时代,高效的数据检索和分析能力已成为许多应用程序的核心需求。Elasticsearch,作为一款强大的分布式搜索和分析引擎,正是为了满足这些需求而诞生的。它之所以能够在海量数据中实现毫秒级的搜索响应,以及灵活的数据分…

深度学习本科课程 实验3 网络优化

一、在多分类任务实验中实现momentum、rmsprop、adam优化器 1.1 任务内容 在手动实现多分类的任务中手动实现三种优化算法,并补全Adam中计算部分的内容在torch.nn实现多分类的任务中使用torch.nn实现各种优化器,并对比其效果 1.2 任务思路及代码 imp…

笔记本电脑的WIFI模块,突然不显示了,网络也连接不上

问题复现: 早上,在更新完笔记本电脑的系统之后,连网之后,网络突然直接断开,一查看,WiFi模块居然不见了,开机重启也是如此,这种情况常常出现在更新系统之后,WiFi模块驱动就…

RK3399平台开发系列讲解(内存篇)进程内存详解

🚀返回专栏总目录 文章目录 一、虚拟地址映射的物理内存1.1、物理内存1.2、虚拟内存1.2.1、用户态:低特权运行程序1.2.2、内核态:运行的程序需要访问操作系统内核数据二、PageCache三、指标查询命令沉淀、分享、成长,让自己和他人都能有所收获!😄 📢进程消耗的内存包…

自动化报告pptx-python|如何将pandas的表格写入PPTX(二)

本篇延续:自动化报告的前奏|使用python-pptx操作PPT(一) 因为在pptx-python中使用table,需要单个cell逐一输入,于是在想有没有pandas可以直接读入的方式, 有两个开源项目有类似的功能: PandasToPowerpointmspandas其中mspandas写的比较复杂,PandasToPowerpoint比较易懂…

编程笔记 html5cssjs 072 JavaScript BigInt数据类型

编程笔记 html5&css&js 072 JavaScript BigInt数据类型 一、BigInt 数据类型二、BigInt 的创建和使用三、BigInt 操作与方法三、示例小结 JavaScript BigInt 数据类型是一种内置的数据类型,用于表示大于 Number.MAX_SAFE_INTEGER(即2^53 - 1&…

ASR 概述

前言 随着企业加强了与客户的线上沟通,企业越发依赖于虚拟助手、聊天机器人以及其他的语音技术,以实现与客户的高效互动。这几类人工智能,都是依赖于自动语音识别技术,简称为 ASR。ASR 涉及到将语音转换为文本,促使计…