机器学习中常用的性能度量—— ROC 和 AUC

什么是泛化能力?

通常我们用泛化能力来评判一个模型的好坏,通俗的说,泛化能力是指一个机器学期算法对新样本(即模型没有见过的样本)的举一反三的能力,也就是学以致用的能力。

举个例子,高三的学生在高考前大量的刷各种习题,像五年高考三年模拟、三年高考五年模拟之类的,目的就是为了在高考时拿到一个好的分数,高考的题目就是新题,一般谁也没做过,平时的刷题就是为了掌握试题的规律,能够举一反三、学以致用,这样面对新的题目也能从容应对。这种规律的掌握便是泛化能力,有的同学很聪明,考上名校,很大程度上是该同学的泛化能力好。

在机器学习中,对于分类和回归两类监督学习,分别有各自的评判标准,这里我们讨论常用于分类任务的性能度量标准——AUC 和 ROC。


几个重要概念:混淆矩阵、准确率、精准率和召回率

1. 混淆矩阵

假设我们建立的是二分类模型,将实际类别和预测类别进行两两组合,就形成了混淆矩阵。

真实情况预测结果
正例反例
正例TP(真正例)FN(假反例)
反例FP(假正例)TN(真反例)

接下来的性能度量指标都是由混淆矩阵的各个元素计算得来。

2. 准确率

准确率 = T P + T N T P + T N + F P + F N 准确率=\frac{TP+TN}{TP+TN+FP+FN} 准确率=TP+TN+FP+FNTP+TN

在样本均衡的情况下,准确率是一个适用的性能度量指标,但是,在样本不平衡的情况下,并不能很好的衡量结果。例如,在信用风险评估中,正样本为 90%,负样本(发生违约的样本)为 10%,样本严重失衡,在这种情况下,即使我们全部将样本预测为正样本,正确率也会达到 90%的高准确率。这也说明了,在样本失衡相对严重的情况下,即使准确率很高,结果也会有很大的水份,准确率指标会失效。

3. 查准率

查准率(Precision)又叫精准率,是指在所有被预测为正的样本中实际为正的样本的概率,即在预测为正的样本中,我们有多少把握可以预测正确:

查准率 = T P T P + F P 查准率=\frac{TP}{TP+FP} 查准率=TP+FPTP

查准率和准确率的区别在于:查准率代表对正样本结果中的预测精度,而准确率则代表整体的预测准确程度,既包括正样本,也包括负样本。

4. 召回率

召回率(Recall)又叫查全率,指在实际为正的样本中被预测为正样本的概率。应用场景:在网贷信用风险评估中,相对好用户,我们更关心坏用户,不能错放任何一个坏用户,因为如果我们过多的将坏用户当成好用户,这样后续可能发生的违约金额会远超过好用户偿还的借贷利息金额,造成严重亏损。召回率越高,表示实际坏用户被预测出来的概率越高,即“宁可错杀一千,绝不放过一个。”

精准率 = T P / ( T P + F N ) 精准率=TP/(TP+FN) 精准率=TP/(TP+FN)

一般来说,查准率和召回率是一对矛盾的度量。查准率高时,查全率往往偏低;而查全率高时,查准率往往偏低。
例如,若希望将好瓜尽可能多地选出来,则可通过增加选瓜的数量来实现,如果将所有西瓜都选上,那么所有的好瓜也必然都被选上了,但这样查准率就会较低;若希望选出的瓜中好瓜比率尽可能高,则可只挑选最有把握的瓜,但这样就难免会漏掉不少好瓜,使得查全率较低,通常只有在一些简单的任务中,才可能使查全率和查准率都很高。

如果想要在两者之间找到一个平衡点,通常会使用 F1 分数,它同时考虑了查准率和查全率,让二者同时达到最高,取一个平衡。

F 1 = 2 × 查准率 × 召回率 ( 查准率 + 召回率 ) F1=\frac{2 \times 查准率 \times 召回率}{(查准率+召回率)} F1=(查准率+召回率)2×查准率×召回率


ROC和AUC

1. 真正率和假正率

ROC 和 AUC 可以在无视样本不平衡的情况下进行性能度量,关键在于两个指标:真正率(TPR)和假正率(FPR),其中真正率也叫灵敏度(Sensitivity),假正率则为 1-特异度(Specifucity)。

真正率 ( T P R ) = 灵敏度 = T P T P + F N 真正率(TPR)=灵敏度=\frac{TP}{TP+FN} 真正率(TPR)=灵敏度=TP+FNTP
假正率 ( F R P ) = 1 − 特异度 = F P F P + T N 假正率(FRP)=1-特异度=\frac{FP}{FP+TN} 假正率(FRP)=1特异度=FP+TNFP

可以发现 TPR 和 FPR 分别是基于真实情况 1 和 0 出发的,即分别在真实情况下的正样本和负样本中来观察相关概率问题,正因为如此,所以无论样本是否平衡,都不会被影响。在之前的信用评估例子中,90% 为正样本,10% 为负样本,我们知道用准确率衡量结果是有水份的,但是用 TPR 和 FPR 不一样,这里,TPR 只关注 90% 正样本中有多少是真正被覆盖的,而与剩余 10% 无关,同理,FPR 只关注 10% 负样本中有多少是被错误覆盖的,也与其他 90% 毫无关系,所以可以看出:如果我们从实际表现的各个结果角度出发,就可以避免样本不平衡的问题了,这也是为什么选用 TPR 和 FPR 作为 ROC/AUC 指标的原因。

2. ROC-接受者操作特征曲线

ROC(Receiver Operating Characteristic)曲线,又称接受者操作特征曲线,最早应用于雷达信号检测领域,用于区分信号和噪声。后来人们将其用于评价模型的预测能力,ROC 曲线是基于混淆矩阵得出的。

ROC曲线中横坐标为假正率(FPR),纵坐标为真正率(TPR),是通过遍历所有阈值来绘制整条曲线的,当我们不断的遍历所有阈值,预测的正样本和负样本是不断变化,相应的在 ROC 曲线图中就会沿着曲线滑动。

在这里插入图片描述

改变阈值只是不断的改变正负样本数,即 TPR 和 FPR,但是曲线本身是不会改变的。那如何通过 ROC 来判断一个模型的好坏呢?我们知道 FRP 表示模型虚报的响应程度,TPR 表示模型预测响应的覆盖程度,一个好的模型虚报的越少越好,覆盖的越多越好,这就等价于 TPR 越高,同时 FPR 越低,即 ROC 曲线越陡时,模型的性能就越好。

在这里插入图片描述

之前已经讨论了 ROC 曲线为什么可以无视样本的不平衡,这里通过动图进行演示,可以发现:无论红蓝样本比率如何改变,ROC 曲线都没有影响。

在这里插入图片描述

3. AUC-曲线下面积

AUC 是一种基于排序的高效算法,取值越大,代表模型的预测效果越好,其一般判断标准为:

  • 0.5~0.7:效果较低;
  • 0.7~0.85:效果一般
  • 0.85~0.95:效果很好
  • 0.95~1:效果非常好,但很可能是过拟合导致的

skleanmetrics 对 ROC 和 AUC 的计算进行了实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/668431.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vulhub中Apache APISIX Dashboard API权限绕过导致RCE(CVE-2021-45232)

Apache APISIX是一个动态、实时、高性能API网关,而Apache APISIX Dashboard是一个配套的前端面板。 Apache APISIX Dashboard 2.10.1版本前存在两个API/apisix/admin/migrate/export和/apisix/admin/migrate/import,他们没有经过droplet框架的权限验证&…

今日早报 每日精选15条新闻简报 每天一分钟 知晓天下事 2月5日,星期一

每天一分钟,知晓天下事! 2024年2月5日 星期一 农历腊月廿六 1、 证监会:依法严厉打击操纵市场、恶意做空、内幕交易等重大违法行为。 2、 夜间高铁开行!多地火车站候车室开启通宵服务。 3、 气象台:5日晚至7日湘中以…

Prometheus部署监控报警

在容器环境中配置安装Prometheus部署企业微信容器报警Grafana展示 下载Prometheus (监控Server端) [rootPrometheus-Grafana prometheus]# mkdir /prometheus [rootPrometheus-Grafana prometheus]# docker run -d --name test -P prom/prometheus [ro…

数据与广告系列三十七:广告,商业化的高雅,中间商赚差价的无奈

作者黄崇远 『数据巢』 全文8872字 题图ssyer.com “ 商业化广告,看着其技术复杂又富有挑战性,业务覆盖行业的方方面面又似乎不可或缺,但究其本质,依然是中间商赚差价的生意而已,但细究其背后的深层原因,却…

深入解析Elasticsearch的内部数据结构和机制:行存储、列存储与倒排索引之行存(一)

在当今的大数据时代,高效的数据检索和分析能力已成为许多应用程序的核心需求。Elasticsearch,作为一款强大的分布式搜索和分析引擎,正是为了满足这些需求而诞生的。它之所以能够在海量数据中实现毫秒级的搜索响应,以及灵活的数据分…

笔记本电脑的WIFI模块,突然不显示了,网络也连接不上

问题复现: 早上,在更新完笔记本电脑的系统之后,连网之后,网络突然直接断开,一查看,WiFi模块居然不见了,开机重启也是如此,这种情况常常出现在更新系统之后,WiFi模块驱动就…

RK3399平台开发系列讲解(内存篇)进程内存详解

🚀返回专栏总目录 文章目录 一、虚拟地址映射的物理内存1.1、物理内存1.2、虚拟内存1.2.1、用户态:低特权运行程序1.2.2、内核态:运行的程序需要访问操作系统内核数据二、PageCache三、指标查询命令沉淀、分享、成长,让自己和他人都能有所收获!😄 📢进程消耗的内存包…

docker proxy 【docker 代理】

第一种 创建代理配置文件 mkdir -p /etc/systemd/system/docker.service.d/ cat <<EOF > /etc/systemd/system/docker.service.d/http-proxy.conf Environment"HTTP_PROXYhttp://192.168.21.101:7890" Environment"HTTPS_PROXYhttp://192.168.21.1…

同城外卖跑腿app开发:重新定义城市生活

随着科技的发展和人们生活节奏的加快&#xff0c;同城外卖跑腿app应运而生&#xff0c;成为现代城市生活中的重要组成部分。本文将探讨同城外卖跑腿app开发的意义、市场需求、功能特点以及未来的发展趋势。 一、同城外卖跑腿app开发的意义 同城外卖跑腿app作为一种便捷的生活…

sqli.labs靶场(41-53关)

41、第四十一关 -1 union select 1,2,3-- -1 union select 1,database(),(select group_concat(table_name) from information_schema.tables where table_schemadatabase()) -- -1 union select 1,2,(select group_concat(column_name) from information_schema.columns wher…

0基础学习VR全景平台篇第141篇:如何制作卫星航拍全景

大家好&#xff0c;欢迎观看蛙色官方系列全景摄影课程&#xff01; 很多人都看过或者拍摄过航拍全景&#xff0c;其效果相比于普通的地拍的确有着更加震撼的拍摄效果&#xff0c;但是受限于无人机高度&#xff0c;以及禁飞区等等限制&#xff0c;导致很多大场景无法展示完全&a…

Linux防火墙与iptables五表五链规则介绍

目录 一、防火墙基本认识 1. 安全技术 2. 防火墙分类 3. 防火墙工具介绍 二、iptables 1. 概述 2. 五表五链 3. 语法 3.1 基本语法 3.2 语法总结 4. 管理选项 5. 通用匹配 6. 控制类型 7. iptables应用 7.1 新增防火墙规则 7.2 查看规则表 7.3 黑白名单 7.4 …

C++ 调用lua 脚本

需求&#xff1a; 使用Qt/C 调用 lua 脚本 扩展原有功能。 步骤&#xff1a; 1&#xff0c;工程中引入 头文件&#xff0c;库文件。lua二进制下载地址&#xff08;Lua Binaries&#xff09; 2&#xff0c; 调用脚本内函数。 这里调用lua 脚本中的process函数&#xff0c;并…

canvas图片上设置镂空文字效果

查看专栏目录 canvas实例应用100专栏&#xff0c;提供canvas的基础知识&#xff0c;高级动画&#xff0c;相关应用扩展等信息。canvas作为html的一部分&#xff0c;是图像图标地图可视化的一个重要的基础&#xff0c;学好了canvas&#xff0c;在其他的一些应用上将会起到非常重…

C语言-3

定义指针 /*指针的概念:1.为了方便访问内存中的内容&#xff0c;给每一个内存单元&#xff0c;进行编号&#xff0c;那么我们称这个编号为地址&#xff0c;也就是指针。2.指针也是一种数据类型&#xff0c;指针变量有自己的内存&#xff0c;里面存储的是地址&#xff0c;也就是…

【HarmonyOS应用开发】APP应用的通知(十五)

相关介绍 通知旨在让用户以合适的方式及时获得有用的新消息&#xff0c;帮助用户高效地处理任务。应用可以通过通知接口发送通知消息&#xff0c;用户可以通过通知栏查看通知内容&#xff0c;也可以点击通知来打开应用&#xff0c;通知主要有以下使用场景&#xff1a; 显示接收…

BUGKU-WEB Simple_SSTI_1

02 Simple_SSTI_1 题目描述 没啥好说的~ 解题思路 进入场景后&#xff0c;显示&#xff1a; You need pass in a parameter named flag。ctrlu 查看源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><titl…

代码随想录 Leetcode491. 非递减子序列

题目&#xff1a; 代码(首刷看解析 2024年2月3日&#xff09;&#xff1a; class Solution { private:vector<vector<int>> res;vector<int> path; public:void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {res.…

HSM加密机原理:密钥管理和加密操作从软件层面转移到物理设备中 DUKPT 安全行业基础8

HSM加密机原理 硬件安全模块&#xff08;HSM&#xff09;是一种物理设备&#xff0c;设计用于安全地管理、处理和存储加密密钥和数字证书。HSM广泛应用于需要高安全性的场景&#xff0c;如金融服务、数据保护、企业安全以及政府和军事领域。HSM提供了一种比软件存储密钥更安全…

Web html和css

目录 1 前言2 HTML2.1 元素(Element)2.1.1 块级元素和内联(行级)元素2.1.2 空元素 2.2 html页面的文档结构2.3 常见标签使用2.3.1 注释2.3.2 标题2.3.3 段落2.3.4 列表2.3.5 超链接2.3.6 图片2.3.7 内联(行级)标签2.3.8 换行 2.4 属性2.4.1 布尔属性 2.5 实体引用2.6 空格2.7 D…