OpenCV(十六):高斯图像金字塔

目录

1.高斯图像金字塔原理

2.高斯图像金字塔实现


1.高斯图像金字塔原理

高斯图像金字塔是一种用于多尺度图像表示和处理的重要技术。它通过对图像进行多次高斯模糊和下采样操作来生成不同分辨率的图像层级,每个层级都是原始图像的模糊和降采样版本。

以下是高斯图像金字塔的原理和步骤:

  1. 高斯模糊(Gaussian Blurring):首先,对原始图像应用高斯滤波器进行模糊处理。高斯滤波器是一种线性低通滤波器,可以在空域上对图像进行平滑,去除图像中的高频细节。

  2. 下采样(Subsampling):对模糊后的图像进行下采样操作,即将图像尺寸缩小一半。下采样操作可以通过选择每隔一定像素进行采样来实现,或者使用插值技术(如平均值、最近邻等)生成新尺寸更小的图像。

  3. 重复步骤1和2:以缩小的图像为输入,重复执行高斯模糊和下采样步骤来构建金字塔的下一层。每一层都是前一层的模糊和降采样版本。

  4. 金字塔构建:重复进行高斯模糊和下采样操作,直到到达所需的金字塔层级或图像尺寸小于一定阈值。每个层级的下采样图像作为金字塔的一层,并按顺序排列形成金字塔结构。

通过构建高斯图像金字塔,可以获取到原始图像的不同分辨率版本,其中高层级的图像具有较低的分辨率,低层级的图像具有较高的分辨率。这样的金字塔结构允许在不同尺度上进行图像处理和分析任务,例如特征提取、目标检测、图像融合等。

2.高斯图像金字塔实现

在OpenCV中,可以使用cv::pyrDown()和cv::pyrUp()函数来实现高斯图像金字塔的构建。高斯图像金字塔是一种多尺度表示的图像结构,通过不断对图像进行降采样(下采样)和上采样操作,获得不同分辨率的图像层级。

  1. cv::pyrDown()函数:

    • 函数原型:void pyrDown(InputArray src, OutputArray dst, const Size& dstsize = Size(), int borderType = BORDER_DEFAULT)

    • 参数说明:

      • src:输入图像,可以是单通道或多通道的图像,数据类型为 CV_8U、CV_16U、CV_16S、CV_32F 或 CV_64F。

      • dst:输出图像,下采样后的图像。

      • dstsize:可选参数,输出图像的尺寸,默认情况下,输出图像的尺寸为输入图像尺寸的一半,也可以手动指定输出图像的尺寸。

      • borderType:可选参数,用于边缘填充的类型,默认为 BORDER_DEFAULT。

    • 功能:执行高斯金字塔的下采样操作,将输入图像的尺寸减半,并生成一个尺寸更小的图像。

  2. cv::pyrUp()函数:

    • 函数原型:void pyrUp(InputArray src, OutputArray dst, const Size& dstsize = Size(), int borderType = BORDER_DEFAULT)

    • 参数说明:

      • src:输入图像,可以是单通道或多通道的图像,数据类型为 CV_8U、CV_16U、CV_16S、CV_32F 或 CV_64F。

      • dst:输出图像,上采样后的图像。

      • dstsize:可选参数,输出图像的尺寸,默认情况下,输出图像的尺寸为输入图像尺寸的两倍,也可以手动指定输出图像的尺寸。

      • borderType:可选参数,用于边缘填充的类型,默认为 BORDER_DEFAULT。

    • 功能:执行高斯金字塔的上采样操作,将输入图像的尺寸增大一倍,并生成一个尺寸更大的图像。

这两个函数结合使用可以实现图像金字塔的构建。通过多次使用cv::pyrDown()进行下采样,可以生成金字塔的较低层级图像。然后,如果需要,可以使用cv::pyrUp()进行上采样,将图像恢复到原始分辨率。

下面是一个使用OpenCV实现高斯图像金字塔的示例代码:

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("image.jpg");// 构建高斯图像金字塔std::vector<cv::Mat> Guass;int level=3;Guass.push_back(image);for(int i=0;i<level;i++){Mat guass;cv::pyrDown(Guass[i], guass);Guass.push_back(guass);}// 显示金字塔图像for (int i = 0; i < level; i++) {cv::imwrite("/sdcard/DCIM/guass" + std::to_string(i)+".png", Guass[i]);}return 0;
}

在这个示例中,我们首先使用cv::imread()函数读取一张图像。然后,我们创建一个std::vector<cv::Mat>类型的变量Guass来保存金字塔图像的每一层。我们将原始图像作为金字塔的第一层。

接下来,我们使用一个循环来对guass图像进行下采样操作。在每次迭代中,使用cv::pyrDown()函数将guass图像降采样,并将降采样后的图像添加到Guass向量中。

最后,我们通过遍历Guass向量将每一层金字塔图像显示出来,使用cv::imwrite()函数显示每一层图像。

需要注意的是,高斯图像金字塔的构建可以通过不断的下采样和上采样操作来实现。其中cv::pyrDown()用于下采样操作,将图像尺寸减半,而cv::pyrUp()用于上采样操作,将图像尺寸扩大一倍。你可以根据需求使用cv::pyrUp()函数来实现高斯图像金字塔的上采样操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/66643.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

count(1)与count(*)的区别、ROUND函数

部分问题 1. count(1)与count(*)的区别2. ROUND函数3. SQL19 分组过滤练习题4. Mysql bigdecimal 与 float的区别5. 隐式内连接与显示内连接 &#xff08;INNER可省略&#xff09; 1. count(1)与count(*)的区别 COUNT(*)和COUNT(1)有什么区别&#xff1f; count(*)包括了所有…

图表背后的故事:数据可视化的威力与影响

数据可视化现在在市场上重不重要&#xff1f;这已经不再是一个简单的问题&#xff0c;而是一个不可忽视的现实。随着信息时代的来临&#xff0c;数据已经成为企业和组织的核心资产&#xff0c;而数据可视化则成为释放数据价值的重要工具。 在当今竞争激烈的商业环境中&#xf…

小赢科技,寻找金融科技核心价

如果说金融是经济的晴雨表&#xff0c;是通过改善供给质量以提高经济质量的切入口&#xff0c;那么金融科技公司&#xff0c;就是这一切行动的推手。上半年&#xff0c;社会经济活跃程度提高背后&#xff0c;金融科技公司既是奉献者&#xff0c;也是受益者。 8月29日&#xff0…

数据艺术:精通数据可视化的关键步骤

数据可视化是将复杂数据转化为易于理解的图表和图形的过程&#xff0c;帮助我们发现趋势、关联和模式。同时数据可视化也是数字孪生的基础&#xff0c;本文小编带大家用最简单的话语为大家讲解怎么制作一个数据可视化大屏&#xff0c;接下来跟随小编的思路走起来~ 1.数据收集和…

华为云Stack的学习(四)

五、Service OM资源管理 1.Service OM简介 1.1 Service OM介绍 在华为云Stack解决方案中&#xff0c;Service OM是FusionSphere OpenStack的操作管理界面&#xff0c;是资源池&#xff08;计算、存储、网络&#xff09;以及基础云服务的管理工具。 1.2 Service OM定位 Serv…

Apifox(1)比postman更优秀的接口自动化测试平台

Apifox介绍 Apifox 是 API 文档、API 调试、API Mock、API 自动化测试一体化协作平台&#xff0c;定位 Postman Swagger Mock JMeter。通过一套系统、一份数据&#xff0c;解决多个系统之间的数据同步问题。只要定义好 API 文档&#xff0c;API 调试、API 数据 Mock、API 自…

Mysql数据库(3)—架构和日志

Mysql的架构设计 Mysql分为Server层和存储引擎层&#xff1a; Server层 主要包括连接器、查询缓存、分析器、优化器、执行器等&#xff0c;涵盖 MySQL 的大多数核心服务功能&#xff0c;以及所有的内置函数&#xff08;如日期、时间、数学和加密函数等&#xff09;&#xff…

【GitHub 个人主页】适应于初学者的自定义个人主页设置

▚ 00 自定义GitHub主页的教程 &#x1f341; 【保姆级教程】手把手教你用github制作学术个人主页&#xff08;学者必备&#xff09; ▚ 01 优秀案例 1.1 添加Stats &#x1f383; 网址为&#xff1a;Stats & Most Used Langs

【一等奖方案】大规模金融图数据中异常风险行为模式挖掘赛题「NUFE」解题思路

第十届CCF大数据与计算智能大赛&#xff08;2022 CCF BDCI&#xff09;已圆满结束&#xff0c;大赛官方竞赛平台DataFountain&#xff08;简称DF平台&#xff09;正在陆续释出各赛题获奖队伍的方案思路&#xff0c;欢迎广大数据科学家交流讨论。 本方案为【大规模金融图数据中…

pandas数据分析之数据绘图

一图胜千言&#xff0c;将信息可视化&#xff08;绘图&#xff09;是数据分析中最重要的工作之一。它除了让人们对数据更加直观以外&#xff0c;还可以帮助我们找出异常值、必要的数据转换、得出有关模型的想法等等。pandas 在数据分析、数据可视化方面有着较为广泛的应用。本文…

使用MDK5的一些偏僻使用方法和谋个功能的作用

程序下载后无法运行 需要勾选如下库&#xff0c;是优化后的库&#xff1b; MicroLib和标准C库之间的主要区别是: 1、MicroLib是专为深度嵌入式应用程序而设计的。 2、MicroLib经过优化&#xff0c;比使用ARM标准库使用更少的代码和数据内存。 3、MicroLib被设计成在没有操作…

Windows安装配置Rust(附CLion配置与运行)

Windows安装配置Rust&#xff08;附CLion配置与运行&#xff09; 前言一、下载二、安装三、配置标准库&#xff01;&#xff01;&#xff01;四、使用 CLion 运行 rust1、新建rust项目2、配置运行环境3、运行 前言 本文以 windows 安装为例&#xff0c;配置编译器为 minGW&…

Linux知识点 -- Linux多线程(四)

Linux知识点 – Linux多线程&#xff08;四&#xff09; 文章目录 Linux知识点 -- Linux多线程&#xff08;四&#xff09;一、线程池1.概念2.实现3.单例模式的线程池 二、STL、智能指针和线程安全1.STL的容器是否是线程安全的2.智能指针是否是线程安全的 三、其他常见的各种锁…

Shiro整合SpringBoot,实战下的应用场景

文章目录 前言一、springBootshiro环境准备1.数据库2.ssmp环境搭建3.实体类4.三层搭建5.初始化测试数据 二、Shiro过滤器1.Shiro认证过滤器2.Shiro授权过滤器 三、springBootshiro身份认证1.创建Realm,重写认证方法doGetAuthenticationInfo2.创建shiro配置类3.Postman测试 四、…

财报解读:迈向高端化,珍酒李渡如何持续讲好品牌故事?

2023年上半年&#xff0c;尤其是第二季度&#xff0c;白酒行业淡季属性较为明显。对于市场情况&#xff0c;中国酒业协会《2023中国白酒市场中期研究报告》也有所披露&#xff1a;约40.91%的受访者反馈春节后平日的白酒消费量有所减少&#xff0c;约31.82%的受访者反馈五一期间…

python调用git出错:ImportError: Failed to initialize: Bad git executable.

报错信息 #报错信息 Traceback (most recent call last): File “”, line 1, in File “C:\Python27\lib\site-packages\git_init_.py”, line 85, in raise ImportError(‘Failed to initialize: {0}’.format(exc)) ImportError: Failed to initialize: Bad git executab…

锂电池充电电路方案

锂电池充电电路一 原理图如下 都是比较小的&#xff0c;SOT-23-6 封装 此方案的优势是器件可以扩容&#xff0c;也就是可以替换成容量更大的mos管。 锂电池充电电路二 锂电池充电电路三 注意线的粗细。 引脚说明 锂电池电量检测电路 键盘上的电量检测电路原理图 电量检…

Flutter状态管理 — 探索Flutter中的状态

前言 随着响应式编程的理念&Flutter被大众所了解以来&#xff0c;状态管理一直是一个引人深思的话题。如果想要学习好Flutter这样的响应式的编程框架就一定是离不开状态管理的。我遇到过很多没有了解过响应式编程框架的&#xff0c;或者从事后端开发&#xff0c;自己想用F…

国标GB28181视频平台EasyGBS国标视频云平台级联到EasyCVR,上级平台无法播放通道视频的问题解决方案

EasyGBS国标视频云平台是基于国标GB28181协议的视频能力兼服务平台&#xff0c;可实现的视频能力包括将设备通过国标GB28181协议接入、流媒体转码、处理及分发、直播录像、语音对讲、云存储、告警、平台级联等功能。其中&#xff0c;平台级联功能是指平台与平台之间可以通过国标…

计算机竞赛 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

文章目录 0 简介1 二维码检测2 算法实现流程3 特征提取4 特征分类5 后处理6 代码实现5 最后 0 简介 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉 该项目较为新颖&#xff0c;适合作为竞赛课…