Linux知识点 -- Linux多线程(四)

Linux知识点 – Linux多线程(四)

文章目录

  • Linux知识点 -- Linux多线程(四)
  • 一、线程池
    • 1.概念
    • 2.实现
    • 3.单例模式的线程池
  • 二、STL、智能指针和线程安全
    • 1.STL的容器是否是线程安全的
    • 2.智能指针是否是线程安全的
  • 三、其他常见的各种锁
  • 四、读者写者问题
    • 1.读写锁
    • 2.读写锁接口


一、线程池

1.概念

一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价。线程池不仅能够保证内核的充分利用,还能防止过分调度。可用线程数量应该取决于可用的并发处理器、处理器内核、内存、网络sockets等的数量。

  • 预先申请资源,用空间换时间;
  • 预先申请一批线程,任务到来就处理;
  • 线程池就是一个生产消费模型;

2.实现

thread.hpp
线程封装:

#pragma once#include<iostream>
#include<string>
#include<functional>
#include<cstdio>typedef void* (*fun_t)(void*); // 定义函数指针类型,后面回调class ThreadData  // 线程信息结构体
{
public:void* _args;std::string _name;
};class Thread
{
public:Thread(int num, fun_t callback, void* args): _func(callback){char nameBuffer[64];snprintf(nameBuffer, sizeof(nameBuffer), "Thread-%d", num);_name = nameBuffer;_tdata._args = args;_tdata._name = _name;}void start() // 创建线程{pthread_create(&_tid, nullptr, _func, (void*)&_tdata); // 直接将_tdata作为参数传给回调函数}void join() // 线程等待{pthread_join(_tid, nullptr);}std::string name(){return _name;}~Thread(){}private:std::string _name;fun_t _func;ThreadData _tdata;pthread_t _tid;
};

lockGuard.hpp
锁的封装,构建对象时直接加锁,对象析构时自动解锁;

#pragma once#include <iostream>
#include <pthread.h>class Mutex
{
public:Mutex(pthread_mutex_t *mtx): _pmtx(mtx){}void lock(){pthread_mutex_lock(_pmtx);}void unlock(){pthread_mutex_unlock(_pmtx);}~Mutex(){}private:pthread_mutex_t *_pmtx;
};class lockGuard
{
public:lockGuard(pthread_mutex_t *mtx): _mtx(mtx){_mtx.lock();}~lockGuard(){_mtx.unlock();}
private:Mutex _mtx;
};

log.hpp

#pragma once#include<iostream>
#include<cstdio>
#include<cstdarg>
#include<ctime>
#include<string>//日志级别
#define DEBUG 0
#define NORMAL 1
#define WARNING 2
#define ERROR 3
#define FATAL 4const char* gLevelMap[] = {"DEBUG","NORMAL","WARNING","ERROR","FATAL"
};#define LOGFILE "./threadpool.log"//完整的日志功能,至少需要:日志等级 时间 支持用户自定义(日志内容,文件行,文件名)void logMessage(int level, const char* format, ...)
{
#ifndef DEBUG_SHOWif(level == DEBUG) return;
#endifchar stdBuffer[1024];//标准部分time_t timestamp = time(nullptr);snprintf(stdBuffer, sizeof(stdBuffer), "[%s] [%ld] ", gLevelMap[level], timestamp);char logBuffer[1024];//自定义部分va_list args;va_start(args, format);vsnprintf(logBuffer, sizeof(logBuffer), format, args);va_end(args);FILE* fp = fopen(LOGFILE, "a");fprintf(fp, "%s %s\n", stdBuffer, logBuffer);fclose(fp);
}
  • 注:
    (1)提取可变参数
    在这里插入图片描述
    使用宏来提取可变参数:
    在这里插入图片描述
    将可变参数格式化打印到对应地点:
    在这里插入图片描述
    format是打印的格式;
    在这里插入图片描述
    (2)条件编译:
    在这里插入图片描述
    条件编译,不想调试的时候,就不加DEBUG宏,不打印日志信息;
    在这里插入图片描述
    -D:在命令行定义宏 ;

threadPool.hpp

线程池封装:

#include "thread.hpp"
#include <vector>
#include <queue>
#include <unistd.h>
#include "log.hpp"
#include "Task.hpp"
#include "lockGuard.hpp"const int g_thread_num = 3;template <class T>
class ThreadPool
{
public:pthread_mutex_t *getMutex(){return &_lock;}bool isEmpty(){return _task_queue.empty();}void waitCond(){pthread_cond_wait(&_cond, &_lock);}T getTask(){T t = _task_queue.front();_task_queue.pop();return t;}ThreadPool(int thread_num = g_thread_num): _num(thread_num){pthread_mutex_init(&_lock, nullptr);pthread_cond_init(&_cond, nullptr);for (int i = 1; i <= _num; i++){_threads.push_back(new Thread(i, routine, this));// 线程构造传入的this指针,是作为ThreadData结构体的参数的,ThreadData结构体才是routine回调函数的参数}}void run(){for (auto &iter : _threads){iter->start();logMessage(NORMAL, "%s %s", iter->name().c_str(), "启动成功");}}// 消费过程:线程调用回调函数取任务就是所谓的消费过程,访问了临界资源,需要加锁static void *routine(void *args){ThreadData *td = (ThreadData *)args;ThreadPool<T> *tp = (ThreadPool<T> *)td->_args; // 拿到this指针while (true){T task;{lockGuard lockguard(tp->getMutex());while (tp->isEmpty()){tp->waitCond();}// 读取任务task = tp->getTask();// 任务队列是共享的,将任务从共享空间,拿到私有空间}task(td->_name); // 处理任务}}void pushTask(const T &task){lockGuard lockguard(&_lock); // 访问临界资源,需要加锁_task_queue.push(task);pthread_cond_signal(&_cond); // 推送任务后,发送信号,让进程处理}~ThreadPool(){for (auto &iter : _threads){iter->join();delete iter;}pthread_mutex_destroy(&_lock);pthread_cond_destroy(&_cond);}private:std::vector<Thread *> _threads; // 线程池int _num;std::queue<T> _task_queue; // 任务队列pthread_mutex_t _lock;     // 锁pthread_cond_t _cond;      // 条件变量
};
  • 注:
    (1)如果回调函数routine放在thread类里面,由于成员函数会默认传this指针,因此参数识别的时候可能会出错,所以需要设置成静态成员;在这里插入图片描述
    在这里插入图片描述
    (2)如果设置成静态类内方法,这个函数只能使用静态成员,而不能使用其他类内成员;
    可以让routine函数拿到整体对象,在构造线程的时候,routine的参数传入this指针;

    在这里插入图片描述
    在构造函数的初始化列表中是参数的初始化,在下面的函数体中是赋值的过程,因此在函数体中对象已经存在了,就可以使用this指针了;
    (3)类内公有接口让静态成员函数routine通过this指针能够访问类内成员;
    在这里插入图片描述
    testMain.cc
#include"threadPool.hpp"
#include"Task.hpp"
#include<ctime>
#include<cstdlib>
#include<iostream>
#include<unistd.h>int main()
{srand((unsigned long)time(nullptr) ^ getpid());ThreadPool<Task>* tp = new ThreadPool<Task>();tp->run();while(true){//生产的时候,只做任务要花时间int x = rand()%100 + 1;usleep(7756);int y = rand()%30 + 1;Task t(x, y, [](int x, int y)->int{return x + y;});logMessage(DEBUG, "制作任务完成:%d+%d=?", x, y);//推送任务到线程池中tp->pushTask(t);sleep(1);}return 0;
}

运行结果:
在这里插入图片描述

3.单例模式的线程池

threadPool.hpp

#include "thread.hpp"
#include <vector>
#include <queue>
#include <unistd.h>
#include "log.hpp"
#include "Task.hpp"
#include "lockGuard.hpp"const int g_thread_num = 3;template <class T>
class ThreadPool
{
public:pthread_mutex_t *getMutex(){return &_lock;}bool isEmpty(){return _task_queue.empty();}void waitCond(){pthread_cond_wait(&_cond, &_lock);}T getTask(){T t = _task_queue.front();_task_queue.pop();return t;}//单例模式线程池:懒汉模式
private://构造函数设为私有ThreadPool(int thread_num = g_thread_num): _num(thread_num){pthread_mutex_init(&_lock, nullptr);pthread_cond_init(&_cond, nullptr);for (int i = 1; i <= _num; i++){_threads.push_back(new Thread(i, routine, this));// 线程构造传入的this指针,是作为ThreadData结构体的参数的,ThreadData结构体才是routine回调函数的参数}}ThreadPool(const ThreadPool<T> &other) = delete;const ThreadPool<T>& operator=(const ThreadPool<T> &other) = delete;public://创建单例对象的类内静态成员函数static ThreadPool<T>* getThreadPool(int num = g_thread_num){//在这里再加上一个条件判断,可以有效减少未来必定要进行的加锁检测的问题//拦截大量的在已经创建好单例的时候,剩余线程请求单例而直接申请锁的行为if(nullptr == _thread_ptr){//加锁lockGuard lockguard(&_mutex);//未来任何一个线程想要获取单例,都必须调用getThreadPool接口//一定会存在大量的申请锁和释放锁的行为,无用且浪费资源if(nullptr == _thread_ptr){_thread_ptr = new ThreadPool<T>(num);}}return _thread_ptr;}void run(){for (auto &iter : _threads){iter->start();logMessage(NORMAL, "%s %s", iter->name().c_str(), "启动成功");}}// 消费过程:线程调用回调函数取任务就是所谓的消费过程,访问了临界资源,需要加锁static void *routine(void *args){ThreadData *td = (ThreadData *)args;ThreadPool<T> *tp = (ThreadPool<T> *)td->_args; // 拿到this指针while (true){T task;{lockGuard lockguard(tp->getMutex());while (tp->isEmpty()){tp->waitCond();}// 读取任务task = tp->getTask();// 任务队列是共享的,将任务从共享空间,拿到私有空间}task(td->_name); // 处理任务}}void pushTask(const T &task){lockGuard lockguard(&_lock); // 访问临界资源,需要加锁_task_queue.push(task);pthread_cond_signal(&_cond); // 推送任务后,发送信号,让进程处理}~ThreadPool(){for (auto &iter : _threads){iter->join();delete iter;}pthread_mutex_destroy(&_lock);pthread_cond_destroy(&_cond);}private:std::vector<Thread *> _threads; // 线程池int _num;std::queue<T> _task_queue; // 任务队列static ThreadPool<T>* _thread_ptr;static pthread_mutex_t _mutex;pthread_mutex_t _lock;     // 锁pthread_cond_t _cond;      // 条件变量
};//静态成员在类外初始化
template<class T>
ThreadPool<T>* ThreadPool<T>::_thread_ptr = nullptr;template<class T>
pthread_mutex_t ThreadPool<T>::_mutex = PTHREAD_MUTEX_INITIALIZER;

在这里插入图片描述
在这里插入图片描述
多线程同时调用单例过程,由于创建过程是非原子的,有可能被创建多个对象,是非线程安全的;
需要对创建对象的过程加锁,就可以保证在多线程场景当中获取单例对象;
但是未来任何一个线程想调用单例对象,都必须调用这个成员函数,就会存在大量申请和释放锁的行为;
可以在之间加一个对单例对象指针的判断,若不为空,就不进行对象创建;

在这里插入图片描述
testMain.cc

#include"threadPool.hpp"
#include"Task.hpp"
#include<ctime>
#include<cstdlib>
#include<iostream>
#include<unistd.h>int main()
{srand((unsigned long)time(nullptr) ^ getpid());//ThreadPool<Task>* tp = new ThreadPool<Task>();//tp->run();    ThreadPool<Task>::getThreadPool()->run();//创建单例对象while(true){//生产的时候,只做任务要花时间int x = rand()%100 + 1;usleep(7756);int y = rand()%30 + 1;Task t(x, y, [](int x, int y)->int{return x + y;});logMessage(DEBUG, "制作任务完成:%d+%d=?", x, y);//推送任务到线程池中ThreadPool<Task>::getThreadPool()->pushTask(t);sleep(1);}return 0;
}

运行结果:
在这里插入图片描述

二、STL、智能指针和线程安全

1.STL的容器是否是线程安全的

不是;
原因是, STL的设计初衷是将性能挖掘到极致,而一旦涉及到加锁保证线程安全,会对性能造成巨大的影响;
而且对于不同的容器,加锁方式的不同,性能可能也不同(例如hash表的锁表和锁桶)。
因此STL默认不是线程安全。如果需要在多线程环境下使用,往往需要调用者自行保证线程安全。

2.智能指针是否是线程安全的

对于unique_ ptr,由于只是在当前代码块范围内生效,因此不涉及线程安全问题;
对于shared_ptr,多个对象需要共用一个引用计数变量,所以会存在线程安全问题.但是标准库实现的时候考虑到了这个问题,基于原子操作(CAS)的方式保证shared_ptr 能够高效,原子的操作弓|用计数;

三、其他常见的各种锁

  • 悲观锁:在每次取数据时,总是担心数据会被其他线程修改,所以会在取数据前先加锁(读锁,写锁,行锁等) ,当其他线程想要访问数据时,被阻塞挂起;
  • 乐观锁:每次取数据时候,总是乐观的认为数据不会被其他线程修改,因此不上锁。但是在更新数据前,会判断其他数据在更新前有没有对数据进行修改。主要采用两种方式:版本号机制和CAS操作;
    CAS操作:当需要更新数据时,判断当前内存值和之前取得的值是否相等。如果相等则用新值更新。若不等则失败,失败则重试,一般是一个自旋的过程,即不断重试;
  • 自旋锁
    临界资源就绪的时间决定了线程等待的策略;
    不断检测资源是否就绪就是自旋(轮询检测);
    自旋锁本质就是通过不断检测锁状态,来检测资源是否就绪的方案

    在这里插入图片描述
    互斥锁是检测到资源未就绪,就挂起线程;
    临界资源就绪的时间决定了使用哪种锁;

四、读者写者问题

1.读写锁

在编写多线程的时候,有一种情况是十分常见的。那就是,有些公共数据修改的机会比较少,相比较改写,它们读的机会反而高的多。通常而言,在读的过程中,往往伴随着查找的操作,中间耗时长。给这种代码段加锁,会极大地降低我们程序的效率。那么有没有一种方法,可以专门]处理这种多读少写的情况呢?有,那就是读写锁。

  • 读者写者模型与生产消费模型的本质区别:
    生产消费模型中消费者会取走数据,而读者写者模型中读者不会取走数据;

  • 读锁的优先级高

2.读写锁接口

  • 初始化:
    在这里插入图片描述

  • 读者加锁:
    在这里插入图片描述

  • 写者加锁:

在这里插入图片描述
生产消费模型中,生产者和消费者的地位是对等的,这样才能达到最高效的状态
而读写者模型中,写者只有在读者全部退出的时候才能写,是读者优先的,这样就会发生写者饥饿问题;
读者写者问题中读锁的优先级高,是因为这种模型的应用场景为:数据的读取频率非常高,而被修改的频率特别低,这样有助于提升效率;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/66623.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Shiro整合SpringBoot,实战下的应用场景

文章目录 前言一、springBootshiro环境准备1.数据库2.ssmp环境搭建3.实体类4.三层搭建5.初始化测试数据 二、Shiro过滤器1.Shiro认证过滤器2.Shiro授权过滤器 三、springBootshiro身份认证1.创建Realm,重写认证方法doGetAuthenticationInfo2.创建shiro配置类3.Postman测试 四、…

财报解读:迈向高端化,珍酒李渡如何持续讲好品牌故事?

2023年上半年&#xff0c;尤其是第二季度&#xff0c;白酒行业淡季属性较为明显。对于市场情况&#xff0c;中国酒业协会《2023中国白酒市场中期研究报告》也有所披露&#xff1a;约40.91%的受访者反馈春节后平日的白酒消费量有所减少&#xff0c;约31.82%的受访者反馈五一期间…

python调用git出错:ImportError: Failed to initialize: Bad git executable.

报错信息 #报错信息 Traceback (most recent call last): File “”, line 1, in File “C:\Python27\lib\site-packages\git_init_.py”, line 85, in raise ImportError(‘Failed to initialize: {0}’.format(exc)) ImportError: Failed to initialize: Bad git executab…

锂电池充电电路方案

锂电池充电电路一 原理图如下 都是比较小的&#xff0c;SOT-23-6 封装 此方案的优势是器件可以扩容&#xff0c;也就是可以替换成容量更大的mos管。 锂电池充电电路二 锂电池充电电路三 注意线的粗细。 引脚说明 锂电池电量检测电路 键盘上的电量检测电路原理图 电量检…

Flutter状态管理 — 探索Flutter中的状态

前言 随着响应式编程的理念&Flutter被大众所了解以来&#xff0c;状态管理一直是一个引人深思的话题。如果想要学习好Flutter这样的响应式的编程框架就一定是离不开状态管理的。我遇到过很多没有了解过响应式编程框架的&#xff0c;或者从事后端开发&#xff0c;自己想用F…

国标GB28181视频平台EasyGBS国标视频云平台级联到EasyCVR,上级平台无法播放通道视频的问题解决方案

EasyGBS国标视频云平台是基于国标GB28181协议的视频能力兼服务平台&#xff0c;可实现的视频能力包括将设备通过国标GB28181协议接入、流媒体转码、处理及分发、直播录像、语音对讲、云存储、告警、平台级联等功能。其中&#xff0c;平台级联功能是指平台与平台之间可以通过国标…

计算机竞赛 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

文章目录 0 简介1 二维码检测2 算法实现流程3 特征提取4 特征分类5 后处理6 代码实现5 最后 0 简介 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉 该项目较为新颖&#xff0c;适合作为竞赛课…

解决npm install报错: No module named gyp

今天运行一个以前vue项目&#xff0c;启动时报错如下&#xff1a; ERROR Failed to compile with 1 error上午10:19:33 error in ./src/App.vue?vue&typestyle&index0&langscss& Syntax Error: Error: Missing binding D:\javacode\Springboot-MiMall-RSA\V…

#include <graphics.h> #include <conio.h> #include<stdlib.h>无法打开源文件解决方案

一、问题描述 学习数据结构链表的过程中&#xff0c;在编写漫天星星闪烁的代码时&#xff0c;遇到了如下图所示的报错&#xff0c;#include <graphics.h> 、 #include <conio.h> 等无法打开源文件。 并且主程序中initgraph(初始化画布)、setfillcolor&#xff08;…

pdf转换成图片免费软件用哪个?pdf转换成图片就用它

随着技术的发展&#xff0c;现在企业办公运用到的电子文档各种各样&#xff0c;我们日常需要掌握的技能越来越高要求&#xff0c;其中pdf和图片是我们经常接触的文件格式之一&#xff0c;而且这两个文件格式我们会经常将它们进行转换&#xff0c;那么pdf转换成图片怎么操作呢?…

Qt +VTK+Cmake 编译和环境配置(第一篇 采坑)

VTK下载地址&#xff1a;https://vtk.org/download/ cmake下载地址&#xff1a;https://cmake.org/download/ 版本对应方面&#xff0c;如果你的项目对版本没有要求&#xff0c;就不用在意。我就是自己随机搭建的&#xff0c;VTK选择最新版本吧&#xff0c;如果后面其他的库不…

iPhone 隔空投送使用指南:详细教程

本文介绍了如何在iPhone上使用隔空投送,包括如何在iOS 11到iOS 14的iPhone上启用它、发送文件以及接受或拒绝AirDrop发送给你的文件。对于iOS 7以上的旧款iPhone,提供了另一种方法。 如何打开隔空投送 你可以通过以下两种方式之一启动隔空投送功能:在“设置”应用程序或控…

1、[春秋云镜]CVE-2022-32991

文章目录 一、相关信息二、解题思路&#xff08;手注&#xff09;三、通关思路&#xff08;sqlmap&#xff09; 一、相关信息 靶场提示&#xff1a;该CMS的welcome.php中存在SQL注入攻击。 NVD关于漏洞的描述&#xff1a; 注入点不仅在eid处&#xff01;&#xff01;&#xff…

uni-app+uView实现点击查看大图片的效果

<u-button text"月落" click"imgPreview()"></u-button> //注意&#xff1a;参数urls 是预览图片的链接地址&#xff0c;是个数组 imgPreview() {uni.previewImage({indicator: "none",loop: false,urls: []&#xff0c;}) },参数说…

Python爬虫抓取经过JS加密的API数据的实现步骤

随着互联网的快速发展&#xff0c;越来越多的网站和应用程序提供了API接口&#xff0c;方便开发者获取数据。然而&#xff0c;为了保护数据的安全性和防止漏洞&#xff0c;一些API接口采用了JS加密技术这种加密技术使得数据在传输过程中更加安全&#xff0c;但也给爬虫开发带来…

【前端demo】倒计时器 可选择时间 原生实现

文章目录 效果过程日历与获取时间居中背景与字计时器清空计时器 代码HTMLCSSJS 其他demo 效果 效果预览&#xff1a;倒计时器 可选择时间 (codepen.io) 参考&#xff1a; Simple Clock/Countdown timer (codepen.io) 前端页面实现倒计时效果的几种方法_前端倒计时__Boboy的…

Stable Diffuse 之 本地环境部署/安装包下载搭建过程简单记录

Stable Diffuse 之 本地环境部署/安装包下载搭建过程简单记录 目录 Stable Diffuse 之 本地环境部署/安装包下载搭建过程简单记录 一、简单介绍 二、注意事项 三、环境搭建 git 下载和安装 python 下载和安装 stable-diffusion-webui 下载和安装 测试 stable diffuse w…

智慧水产养殖方案,守护养殖水产品安全!

水产品在人们的饮食文化中占据着举足轻重的地位&#xff0c;更是人们摄入蛋白质的重要来源。因此&#xff0c;保障食品安全&#xff0c;提升养殖水产品的品质至关重要然。而传统的人工观察水产养殖方式较为单一&#xff0c;难以及时发现水质问题和投喂情况&#xff0c;容易导致…

Flink+Paimon多流拼接性能优化实战

目录 &#xff08;零&#xff09;本文简介 意外收获&#xff1a; &#xff08;一&#xff09;背景 &#xff08;二&#xff09;探索梳理过程 &#xff08;三&#xff09;源码改造 &#xff08;四&#xff09;修改效果 1、JOB状态 2、Level5的dataFile总大小 3、数据延…