Stable Diffuse 之 本地环境部署/安装包下载搭建过程简单记录

Stable Diffuse 之 本地环境部署/安装包下载搭建过程简单记录

目录

Stable Diffuse 之 本地环境部署/安装包下载搭建过程简单记录

一、简单介绍

二、注意事项

三、环境搭建

git 下载和安装

python 下载和安装

stable-diffusion-webui 下载和安装

测试 stable diffuse webui 文生图功能

附录:Stable Diffusion 一些基础介绍

1、Latent diffusion的主要组成部分

2、为什么Latent Diffusion快速有效

3、Stable Diffusion的推理过程


一、简单介绍

Stable Diffusion是一个文本到图像的潜在扩散模型,由CompVis、Stability AI和LAION的研究人员和工程师创建。它使用来自LAION-5B数据库子集的512x512图像进行训练。使用这个模型,可以生成包括人脸在内的任何图像,因为有开源的预训练模型,所以我们也可以在自己的机器上运行它,如下图所示。

Stable Diffusion是一个AI 绘图软件 (开源模型),可本地部署,可切换多种模型,且新的模型和开源库每天都在更新发布,最重要的是免费,没有绘图次数限制。

Github 网址:GitHub - AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI

二、注意事项

1、电脑的显存至少2G以上

2、最好 python 3.10.x 及以上合适版本

三、环境搭建

这里操作案例环境:win 10

git 下载和安装

1、下载 git ,选择对应版本下载即可

git 下载地址:Git - Downloads

2、安装 git ,操作简单这里不再赘述,安装成功后,cmd 中 git --version 检测是否安装成功

能看到安装版本,说明安装及环境配置成功,如下图

python 下载和安装

1、在 python 官网下载对应版本,这里使用 3.10.9 版本

python 官网下载地址:Download Python | Python.org

2、下载好后,安装 python ,记得包 path 添加到环境变量中

3、在cmd ,测试是否安装成功,python --version

能看到安装版本,说明安装及环境配置成功,如下图

stable-diffusion-webui 下载和安装

1、打开 github 网址,搜索找到 stable-diffusion-webui

stable-diffusion-webui github 地址:GitHub - AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI

2、获取下载地址,在 git 中 clone 克隆下来

3、下载好后,文件夹文件如下图

4、找到 webui-user.bat,运行 webui-user.bat

(安装过程较长,可能需要魔法上网)

5、中间可能出现,需要升级一下 Python 的 pip ,根据提示操作即可

6、重复第4步骤,再次运行 webui-user.bat

中间可能会有 一些安装包安装(clip 、git clone 等)不上,魔法上网可以处理,

7、安装结束之后,会自动打开网页

测试 stable diffuse webui 文生图功能

1、运行 webui-user.bat

2、打开的网页中,输入一些简单的提示词,效果如下

Vincent van Gogh’s painting of Emma Watson; prompt2: John Sargent’s painting of Emma Watson

3、每次的处理过程后台也会有进度

附录:Stable Diffusion 一些基础介绍

Stable Diffusion是一种机器学习模型,它经过训练可以逐步对随机高斯噪声进行去噪以获得感兴趣的样本,例如生成图像。

扩散模型有一个主要的缺点就是去噪过程的时间和内存消耗都非常昂贵。这会使进程变慢,并消耗大量内存。主要原因是它们在像素空间中运行,特别是在生成高分辨率图像时。

Latent diffusion通过在较低维度的潜空间上应用扩散过程而不是使用实际的像素空间来减少内存和计算成本。所以Stable Diffusion引入了Latent diffusion的方式来解决这一问题计算代价昂贵的问题。

1、Latent diffusion的主要组成部分

Latent diffusion有三个主要组成部分:

1)自动编码器(VAE)

自动编码器(VAE)由两个主要部分组成:编码器和解码器。编码器将把图像转换成低维的潜在表示形式,该表示形式将作为下一个组件U_Net的输入。解码器将做相反的事情,它将把潜在的表示转换回图像。

在Latent diffusion训练过程中,利用编码器获得正向扩散过程中输入图像的潜表示(latent)。而在推理过程中,VAE解码器将把潜信号转换回图像。

2)U-Net

U-Net也包括编码器和解码器两部分,两者都由ResNet块组成。编码器将图像表示压缩为低分辨率图像,解码器将低分辨率解码回高分辨率图像。

为了防止U-Net在下采样时丢失重要信息,通常在编码器的下采样的ResNet和解码器的上采样ResNet之间添加了捷径的连接。

在Stable Diffusion的U-Net中添加了交叉注意层对文本嵌入的输出进行调节。交叉注意层被添加到U-Net的编码器和解码器ResNet块之间。

3)Text-Encoder

文本编码器将把输入文字提示转换为U-Net可以理解的嵌入空间,这是一个简单的基于transformer的编码器,它将标记序列映射到潜在文本嵌入序列。从这里可以看到使用良好的文字提示以获得更好的预期输出。

2、为什么Latent Diffusion快速有效

Latent Diffusion之所以快速有效,是因为它的U-Net是在低维空间上工作的。与像素空间扩散相比,这降低了内存和计算复杂度。例如,一个(3,512,512)的图像在潜在空间中会变成(4,64,64),内存将会减少64倍。

3、Stable Diffusion的推理过程

1)首先,模型将潜在空间的随机种子和文本提示同时作为输入。然后使用潜在空间的种子生成大小为64×64的随机潜在图像表示,通过CLIP的文本编码器将输入的文本提示转换为大小为77×768的文本嵌入。

2)然后,使用U-Net 在以文本嵌入为条件的同时迭代地对随机潜在图像表示进行去噪。 U-Net 的输出是噪声的残差,用于通过scheduler 程序算法计算去噪的潜在图像表示。 scheduler 算法根据先前的噪声表示和预测的噪声残差计算预测的去噪图像表示。

许多不同的scheduler 算法可以用于这个计算,每一个都有它的优点和缺点。对于Stable Diffusion,建议使用以下其中之一:

  • PNDM scheduler (默认)

  • DDIM scheduler

  • K-LMS scheduler

去噪过程重复约50次,这样可以逐步检索更好的潜在图像表示。一旦完成,潜在图像表示就会由变分自编码器的解码器部分进行解码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/66596.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智慧水产养殖方案,守护养殖水产品安全!

水产品在人们的饮食文化中占据着举足轻重的地位,更是人们摄入蛋白质的重要来源。因此,保障食品安全,提升养殖水产品的品质至关重要然。而传统的人工观察水产养殖方式较为单一,难以及时发现水质问题和投喂情况,容易导致…

Flink+Paimon多流拼接性能优化实战

目录 (零)本文简介 意外收获: (一)背景 (二)探索梳理过程 (三)源码改造 (四)修改效果 1、JOB状态 2、Level5的dataFile总大小 3、数据延…

STM32定时器定时及其应用

STM32定时器定时及其应用 定时器概述☆定时器相关配置CubeMX工程配置及程序实现固件库程序设计及实现 定时器概述 1. 工作原理 使用精准的时基,通过硬件的方式,实现定时功能。定时器核心就是计数器 2. 定时器分类   基本定时器(TIM6~TIM7…

Redis 事务

1. 是什么 1. 官网 https://redis.io/dosc/manual/transactions/ 2. 可以一次执行多个命令,本质是一组命令的集合。一个事务中的所有命令都会序列化,按顺序地串行化执行而不会被其它命令插入,不许加塞 2. 能干啥 一个队列中,一次…

2022年03月 C/C++(七级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:红与黑 有一间长方形的房子, 地上铺了红色、 黑色两种颜色的正方形瓷砖。你站在其中一块黑色的瓷砖上, 只能向相邻的黑色瓷砖移动。 请写一个程序, 计算你总共能够到达多少块黑色的瓷砖。 时间限制: 1000 内存限制: 65536 输入…

C语言----详解socket通信

一:什么是socket 刚接触socket的同学想必也知道socket的中文名,套接字,与其说是中文名倒不如说这是什么玩意,我们先不要管中文名的实际意义,我们先来了解一下什么是socket。 我们上网产生的数据都是经过协议栈一层一层…

Ubuntu18.04安装cuDNN

注册账号 https://developer.nvidia.com/rdp/cudnn-archive 该网站下载安装包需要先进行注册。登录成功后,找到与CUDA对应的版本。 选择Linux版本进行下载。 下载后的格式为.tar.xz 解压 tar xvJf cudnn-linux-x86_64-8.9.3.28_cuda12-archive.tar.xz配置环境 su…

【广州华锐互动】AR远程连接专家进行协同管理,解放双手让协同更便捷

AR远程协同系统是一种基于AR技术,实现远程设备维修和技术支持的系统。该系统通过将虚拟信息叠加在现实世界中,实现对设备的全方位监控和管理,并可以通过AR眼镜等终端设备,实时查看设备的各项数据和信息,为设备维修提供…

Python小知识 - 1. Python装饰器(decorator)

Python装饰器(decorator) Python装饰器是一个很有用的功能,它可以让我们在不修改原有代码的情况下,为已有的函数或类添加额外的功能。 常见的使用场景有: a. 函数缓存:对于一些计算量较大的函数&#xff0c…

2023.9.2 关于 JVM 垃圾回收机制(GC)

目录 为什么要有垃圾回收机制? STW(Stop The World)问题 垃圾回收机制主要回收哪个内存区域? 垃圾对象判断算法 引用计数算法 可达性分析算法 垃圾对象回收算法 标记清除算法 复制算法 标记整理算法 分代算法 为什么要有垃圾回收机制? 自动…

Navicat16连接Oracle报错:Oracle library is not loaded

1、有时候我们在用navicat的时候连接oracle的时候,它会提示我们Oracle library is not loaded,这时候我们要首先验证本机上是否已安装oracle的客户端,如果已安装客户段,navicat中的oci.dll选择我们安装的客户段的oci.dll文件 2、…

MATLAB中编译器中的变量联系到Simulink

MATLAB中编译器中的变量联系到Simulink 现在编译器中创建变量,进行编译,使其生成在工作区。 然后在Simulink中国使用变量即可。

opencv入门-Opencv原理以及Opencv-Python安装

图像的表示 1,位数 计算机采用0/1编码的系统,数字图像也是0/1来记录信息,图像都是8位数图像,包含0~255灰度, 其中0代表最黑,1代表最白 3, 4,OpenCV部署方法 安装OpenCV之前…

Hadoop 集群小文件归档 HAR、小文件优化 Uber 模式

文章目录 小文件归档 HAR小文件优化 Uber 模式 小文件归档 HAR 小文件归档是指将大量小文件合并成较大的文件,从而减少存储开销、元数据管理的开销以及处理时的任务调度开销。 这里我们通过 Hadoop Archive (HAR) 来进行实现,它是一种归档格式&#xf…

使用Docker配置深度学习的运行环境

文章目录 推荐实验环境前言docker安装docker操作docker配置常见方法(安装包、联网、程序管理器)安装驱动的前提要求传统方法安装驱动程序程序管理器安装联网安装deb包安装 安装完成后的设置非传统方法安装-通过容器安装驱动的前提要求安装NVIDIA-Contain…

Scala集合继承体系图

Scala集合简介 1) Scala 的集合有三大类:序列 Seq、集Set、映射 Map,所有的集合都扩展自 Iterable特质。 2) 对于几乎所有的集合类,Scala 都同时提供了可变和不可变的版本,分别位于以下两个包 不可变集合…

Orangepi安装外设库 wiringPi

注意:mobaXterm传送文件要在SSH登陆环境下才可以。 同时电脑和orangepi都在同一个wifi下。

unittest框架的使用

先简单介绍一下unittest的核心组成部分: 测试夹具:Test Fixture 一般用于执行测试用例的准备或者清理工作,比如测试开始前的数据准备或者测试结束的数据清理等。通过setUp()、tearDown()、setUpClass()、tearDownClass()这四个钩子函数实现了…

tableau基础学习2:时间序列数据预处理与绘图

文章目录 数据预处理1. 原始数据2. 合并数据集2. 创建计算字段 绘图分析1. 趋势分析2. 计算字段趋势分析 这一部分,我们记录一些分析时序趋势的分析步骤 数据预处理 1. 原始数据 原始数据是excel表格,其中包含三个Sheet页, 这里我们选择两…