IIR滤波器

IIR滤波器原理

IIR的特点是:非线性相位、消耗资源少。

IIR滤波器的系统函数与差分方程如下所示:

在这里插入图片描述

由差分方程可知IIR滤波器存在反馈,因此在FPGA设计时要考虑到有限字长效应带来的影响。差分方程中包括两个部分:输入信号x(n)的M节延时网络,相当于FIR的网络结构,实现系统的零点;输出信号y(n)的N节延时网络,作为系统的反馈,实现系统的极点。

直接由差分方程得到的IIR滤波器称为直接I型结构,如下图所示,左边为零点部分,右边为极点部分:

在这里插入图片描述

如果由IIR的系统函数出发,视作两个系统的级联,并且合并公共的延时支路,得到的IIR滤波器称为直接II型结构,如下图所示:

很明显,直接I型结构需要2N个延时单元;直接II型结构仅需要N个延时单元,使用FPGA设计时采用直接II型结构可以节省一些资源。
在这里插入图片描述

级联型结构与直接型结构相比:

1.每一个级联部分中的反馈网络很少,易于控制有限字长效应带来的影响,且IIR滤波器的阶数一般较小。

2.便于准确实现数字滤波器的零/极点,每一级分开调整。

3.运算速度快;占用资源少(除法采用移位)。

4.若除法采用移位,每一级都需要用近似移位实现除法运算,与理想误差较大。

IIR滤波器设计

设计一个4阶IIR低通滤波器,采样频率为8MHz,截至频率为2MHz,阻带衰减为40dB,滤波器量化位数12bits。

在这里插入图片描述

级联设计

第一级滤波器

其中系数乘法用移位和加法代替,有利于减少乘法器资源。

module FirstTap (rst,clk,Xin,Yout);input		rst;   //复位信号,高电平有效input		clk;   //FPGA系统时钟,频率为2kHzinput	 signed [11:0]	Xin;  //数据输入频率为2kHZoutput signed [11:0]	Yout; //滤波后的输出数据//零点系数的实现代码///将输入数据存入移位寄存器中reg signed[11:0] Xin1,Xin2;always @(posedge clk or posedge rst)if (rst)//初始化寄存器值为0beginXin1 <= 12'd0;Xin2 <= 12'd0;end	elsebeginXin1 <= Xin;Xin2 <= Xin1;end//采用移位运算及加法运算实现乘法运算wire signed [23:0] XMult0,XMult1,XMult2;assign XMult0 = {{6{Xin[11]}},Xin,6'd0}+{{7{Xin[11]}},Xin,5'd0}-{{11{Xin[11]}},Xin,1'd0};        //*94assign XMult1 = {{5{Xin1[11]}},Xin1,7'd0}+{{9{Xin1[11]}},Xin1,3'd0}+{{10{Xin1[11]}},Xin1,2'd0};  //*140 (2^7+ 2^3 + 2^2)assign XMult2 = {{6{Xin2[11]}},Xin2,6'd0}+{{7{Xin2[11]}},Xin2,5'd0}-{{11{Xin2[11]}},Xin2,1'd0};  //*94//对滤波器系数与输入数据乘法结果进行累加wire signed [23:0] Xout;assign Xout = XMult0 + XMult1 + XMult2;//极点系数的实现代码///wire signed[11:0] Yin;reg signed[11:0] Yin1,Yin2;always @(posedge clk or posedge rst)if (rst)//初始化寄存器值为0beginYin1 <= 12'd0;Yin2 <= 12'd0;endelsebeginYin1 <= Yin;Yin2 <= Yin1;end//采用移位运算及加法运算实现乘法运算wire signed [23:0] YMult1,YMult2;wire signed [23:0] Ysum,Ydiv;assign YMult1 = {{2{Yin1[11]}},Yin1,10'd0}+{{5{Yin1[11]}},Yin1,7'd0}+{{6{Yin1[11]}},Yin1,6'd0}-{{11{Yin1[11]}},Yin1,1'd0}-{{12{Yin1[11]}},Yin1};  //*1213=1024+128+64-2-1assign YMult2 = {{4{Yin2[11]}},Yin2,8'd0}+{{9{Yin2[11]}},Yin2,3'd0}+{{10{Yin2[11]}},Yin2,2'd0}; //*268=256+8+4//第一级IIR滤波器实现代码///assign Ysum = Xout+YMult1-YMult2;	assign Ydiv = {{11{Ysum[23]}},Ysum[23:11]};//2048//根据仿真结果可知,第一级滤波器的输出范围可用9位表示assign Yin = (rst ? 12'd0 : Ydiv[11:0]);//增加一级寄存器,提高运行速度reg signed [11:0] Yout_reg ;always @(posedge clk)Yout_reg <= Yin;assign Yout = Yout_reg;endmodule

第二级滤波器

module SecondTap (rst,clk,Xin,Yout);input		rst;   //复位信号,高电平有效input		clk;   //FPGA系统时钟,频率为2kHzinput	 signed [11:0]	Xin;  //数据输入频率为2kHZoutput signed [11:0]	Yout; //滤波后的输出数据//零点系数的实现代码///将输入数据存入移位寄存器中reg signed[11:0] Xin1,Xin2;always @(posedge clk or posedge rst)if (rst)//初始化寄存器值为0beginXin1 <= 12'd0;Xin2 <= 12'd0;end	elsebeginXin1 <= Xin;Xin2 <= Xin1;end//采用移位运算及加法运算实现乘法运算wire signed [23:0] XMult0,XMult1,XMult2;assign XMult0 = {{1{Xin[11]}},Xin,11'd0};    //*2048assign XMult1 = {{4{Xin1[11]}},Xin1,8'd0}+{{6{Xin1[11]}},Xin1,6'd0}+{{10{Xin1[11]}},Xin1,2'd0};  //*324=256+64+4assign XMult2 = {{1{Xin2[11]}},Xin2,11'd0};  //*2048//对滤波器系数与输入数据乘法结果进行累加wire signed [23:0] Xout;assign Xout = XMult0 + XMult1 + XMult2;//极点系数的实现代码///wire signed[11:0] Yin;reg signed[11:0] Yin1,Yin2;always @(posedge clk or posedge rst)if (rst)//初始化寄存器值为0beginYin1 <= 12'd0;Yin2 <= 12'd0;endelsebeginYin1 <= Yin;Yin2 <= Yin1;end//采用移位运算及加法运算实现乘法运算wire signed [23:0] YMult1,YMult2;wire signed [23:0] Ysum,Ydiv;assign YMult1 = {{1{Yin1[11]}},Yin1,11'd0}-{{5{Yin1[11]}},Yin1,7'd0}-{{9{Yin1[11]}},Yin1,3'd0}-{{10{Yin1[11]}},Yin1,2'd0}-{{12{Yin1[11]}},Yin1};  //*1907=2048-128-8-4-1assign YMult2 = {{2{Yin2[11]}},Yin2,10'd0}+{{5{Yin2[11]}},Yin2,7'd0}+{{8{Yin2[11]}},Yin2,4'd0}+ {{11{Yin2[11]}},Yin2,1'd0}+{{12{Yin2[11]}},Yin2};  //*1171=1024+128+16+2+1//第一级IIR滤波器实现代码///assign Ysum = Xout+YMult1-YMult2;	assign Ydiv = {{11{Ysum[23]}},Ysum[23:11]};//2048//根据仿真结果可知,第一级滤波器的输出范围可用9位表示assign Yin = (rst ? 12'd0 : Ydiv[11:0]);//增加一级寄存器,提高运行速度reg signed [11:0] Yout_reg ;always @(posedge clk)Yout_reg <= Yin;assign Yout = Yout_reg;endmodule

顶层模块

module IIRCas (rst,clk,Xin,Yout);input		rst;   //复位信号,高电平有效input		clk;   //FPGA系统时钟,频率为8MHzinput	 signed [11:0]	Xin;  //数据输入频率为8MHZoutput signed [11:0]	Yout; //滤波后的输出数据//实例化第一级滤波器运算模块wire signed [11:0] Y1;FirstTap U1 (.rst (rst),.clk (clk),.Xin (Xin),.Yout (Y1));//实例化第二级滤波器运算模块SecondTap U2 (.rst (rst),.clk (clk),.Xin (Y1),.Yout (Yout));endmodule

仿真结果

FIR和IIR比较

在这里插入图片描述

参考:

如何快速设计一个IIR滤波器

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/66245.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git中smart Checkout与force checkout

Git中smart Checkout与force checkout 使用git进行代码版本管理,当我们切换分支有时会遇到这样的问题&#xff1a; 这是因为在当前分支修改了代码&#xff0c;但是没有commit,所以在切换到其他分支的时候会弹出这个窗口&#xff0c; 提示你选force checkout或者smart checko…

Redis缓存和持久化

目录 Redis缓存 什么是缓存 缓存更新策略​编辑 业务场景 缓存穿透 常见的解决方案 缓存雪崩 解决方案 缓存击穿 解决方案 Redis持久化 RDB持久化 执行时机 RDB方式bgsave的基本流程 AOF持久化 RDB和AOF的对比​编辑 Redis主从 数据同步原理 总结 Redis缓存 …

2、Nginx 安装

文章目录 2、Nginx 安装2.1 官网下载2.2 安装 nginx2.2.1 第一步2.2.2 第二步2.2.3 第三步&#xff0c;安装 nginx2.2.4 第四步&#xff0c;修改防火漆规则 【尚硅谷】尚硅谷Nginx教程由浅入深 志不强者智不达&#xff1b;言不信者行不果。 2、Nginx 安装 2.1 官网下载 nginx…

iOS - 资源按需加载 - ODR

一、瘦身技术大图 二、On-Demand Resources 简介 将其保存管理在苹果的服务器&#xff0c;按需使用资源、优化包体积&#xff0c;实现更小的应用程序。ODR 的好处&#xff1a; 应用体积更小&#xff0c;下载更快&#xff0c;提升初次启动速度资源会在后台下载操作系统将会在磁…

openGauss学习笔记-59 openGauss 数据库管理-相关概念介绍

文章目录 openGauss学习笔记-59 openGauss 数据库管理-相关概念介绍59.1 数据库59.2 表空间59.3 模式59.4 用户和角色59.5 事务管理 openGauss学习笔记-59 openGauss 数据库管理-相关概念介绍 59.1 数据库 数据库用于管理各类数据对象&#xff0c;与其他数据库隔离。创建数据…

【数据结构】树和二叉树的概念及结构(一)

目录 一&#xff0c;树的概念及结构 1&#xff0c;树的定义 2&#xff0c;树结点的分类及关系 3&#xff0c;树的表示 二&#xff0c;二叉树的概念及结构 1&#xff0c;二叉树的定义 2&#xff0c;特殊的二叉树 3&#xff0c;二叉树的性质 4&#xff0c;二叉树的存储结构 1&…

无涯教程-Android Intent Standard Extra Data函数

下表列出了各种重要的Android Intent Standard Extra Data。您可以查看Android官方文档以获取额外数据的完整列表- Sr.NoExtra Data & Description1 EXTRA_ALARM_COUNT 用作AlarmManager intents(意图)中的int Extra字段,以告诉正在调用的应用程序intents(意图)释放了多少…

【数据结构】二叉树篇|超清晰图解和详解:二叉树的序列化和反序列化

博主简介&#xff1a;努力学习的22级计算机科学与技术本科生一枚&#x1f338;博主主页&#xff1a; 是瑶瑶子啦每日一言&#x1f33c;: 你不能要求一片海洋&#xff0c;没有风暴&#xff0c;那不是海洋&#xff0c;是泥塘——毕淑敏 目录 一、核心二、题目2.1:前序遍历2.2&…

2.4 关系数据库

思维导图&#xff1a; 前言&#xff1a; 这段话描述了“关系数据库”及其背后的理论基础。首先&#xff0c;我们来拆分这段话并逐步解释每部分。 关系数据库是采用关系模型作为数据组织方式的数据库。 这句话的关键是“关系模型”。关系模型是一种表示和操作数据库的理论模型…

操作系统清华同步笔记:定义概述+计算机内存和硬盘布局+启动流程顺序+中断、异常和系统调用

定义概述 从用户角度来看&#xff0c;操作系统是一个控制软件&#xff0c;用以管理应用程序&#xff0c;为应用程序提供服务&#xff0c;杀死应用程序等。从内部文件角度来看&#xff0c;操作系统是一个资源管理器&#xff0c;用以管理外设&#xff0c;分配资源。层次结构&…

命令行编译VS工程

先输入以下命令&#xff0c;因为命令出错了&#xff0c;就会弹出帮助&#xff0c;如下&#xff1a; "C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\devenv.exe" /help 反正就是Microsoft Visual Studio 的安装路径。 帮助界面如下&#xff1a…

core dump管理在linux中的前世今生

目录 一、什么是core dump&#xff1f; 二、coredump是怎么来的&#xff1f; 三、怎么限制coredump文件的产生&#xff1f; ulimit 半永久限制 永久限制 四、从源码分析如何对coredump文件的名字和路径管理 命名 管理 一些问题的答案 1、为什么新的ubuntu不能产生c…

java设计模式---策略模式

策略模式的定义 策略设计模式是一种行为设计模式。当在处理一个业务时&#xff0c;有多种处理方式&#xff0c;并且需要再运行时决定使哪一种具体实现时&#xff0c;就会使用策略模式。 策略模式的类图&#xff1a; 策略模式的实现 在支付业务中&#xff0c;有三种付款方式&…

RabbitMQ工作模式-工作队列

官网关于工作模式的解释地址&#xff1a;https://www.rabbitmq.com/getstarted.html Work Queue&#xff08;工作队列&#xff09; 生产者发消息&#xff0c;启动多个消费者来消费消息&#xff0c;每个消费者仅消费部分消息&#xff0c;可达到负载均衡的效果。 创建生产者 i…

使用docker、docker-compose部署微服务

使用docker、docker-compose部署微服务 一、使用docker部署1、准备2、上传jar包3、编写dockerfile文件3、构建镜像和容器 二、使用docker-compose部署1、准备服务的jar包和dockerfile文件2、编写docker-compose.yml文件3、docker-compose常用命令&#xff08;1&#xff09;、前…

【Linux】以太网协议以及MTU

以太网协议 数据链路层的功能以太网的数据格式MTUMTU对IP协议的影响MTU对UDP协议的影响MTU对TCP协议的影响 数据链路层的功能 数据链路层的主要功能是&#xff1a;控制链路。包括数据链路的建立、链路的维护和释放。MAC寻址也是它的功能&#xff0c;寻址是指计算机网卡的MAC地…

无涯教程-JavaScript - CUBERANKEDMEMBER函数

描述 CUBERANKEDMEMBER函数返回集合中的第n个或排序的成员。 使用此功能可返回一组中的一个或多个元素,如销售业绩最好的人或前十名的学生。 语法 CUBERANKEDMEMBER (connection, set_expression, rank, [caption])争论 Argument描述Required/OptionalconnectionThe name …

vscode搭建springboot开发环境

前言 idea好用到但是收money&#xff0c;eclipse免费但是界面有点丑&#xff0c;所以尝试使用vscode开发springboot 提前准备 安装jdk&#xff0c;jdk需要大于11 安装vscode 安装maven 安装插件 主要是下面的插件 Extension Pack for JavaSpring Boot Extension PackDepe…

【Java 基础篇】Java 数组使用详解:从零基础到数组专家

如果你正在学习编程&#xff0c;那么数组是一个不可或缺的重要概念。数组是一种数据结构&#xff0c;用于存储一组相同类型的数据。在 Java 编程中&#xff0c;数组扮演着非常重要的角色&#xff0c;可以帮助你组织、访问和操作数据。在本篇博客中&#xff0c;我们将从零基础开…

python 美国总统身高统计与分析

美国总统身高统计与分析 1.安装依赖2.下载数据集3.数据处理4.结果展示 1.安装依赖 pip install pandas pip install numpy pip install matplotlib2.下载数据集 链接&#xff1a;https://pan.baidu.com/s/1aZLtkLyvQvRLb9tJ-B1krA 提取码&#xff1a;thms –来自百度网盘超级…