【脑电信号处理与特征提取】P5-彭薇薇:脑电信号的预处理及数据分析要点

彭薇薇:脑电信号的预处理及数据分析要点

脑电

脑电是神经活动的测量方法,在不同位置测量有不同的方法。比如大脑皮层表面测量的是ECoG,在头皮测量的是EEG。除了EEG是无损的,其他都是有损的。
在这里插入图片描述
在这里插入图片描述

脑电信号采集系统

下面是完整的脑电采集系统,需要注意的地方是给被试者发送刺激信号的同时,也需要给放大器发送一个marker,这个是为了标记刺激开始时间。
在这里插入图片描述
下面是采集到的脑电数据,横轴是时间,纵轴每一行是一个电极。下面大概是10s的数据,时间点数取决于采样率,比如说采样率是100Hz,那就是每1ms就会采集一个点。
在这里插入图片描述

电极的放置

10-20系统电极放置法是国际脑电图学会规定的标准电极放置法,如下图所示:
在这里插入图片描述
将从鼻根至枕外粗隆的前后连线称为矢状线,将耳前凹之间的左右连线称为冠状线,两条线的焦点在头顶为Cz电极的位置。

  • 矢状线由前到后依次为Fpz、Fz、Cz、Pz和Oz,除Fpz与鼻根,Oz与枕外粗隆的距离为矢状线长度的10%外,其余点间距为矢状线长度的20%
  • 沿着冠状线,从左耳前凹10%处,依次为T3、C3、Cz、C4、T4,各点之间的距离均为冠状线长度的20%

在10-20的基础之上,在10%位置上进行电极的扩展,便得到10-10系统。
在这里插入图片描述

伪迹

采集的脑电信号难以避免会有许多伪迹,比如肌电、心电等。
下面是一个例子,左上图是我们理想上想要得到的蝴蝶图,左下图是实际采集到的带有伪迹的蝴蝶图。
在这里插入图片描述
对蝴蝶图的每一个时间点计算GFP,会得到右上图,很明显信噪比较高的蝴蝶图计算得到的GFP波形光滑,成分清晰,低信噪比时,尽管有相似的波形,但成分的清晰程度受到噪声的显著影响。
伪迹的类型
EEG数据采集时,伪迹是一定存在的。伪迹无时无刻伴随着EEG信号的采集。
在这里插入图片描述
伪迹的波形
在这里插入图片描述

生理伪迹

肌电伪迹主要是头部和颈部肌肉收缩,通常来自于颞叶区域(有于颞叶区域肌肉收缩)、额叶区域(由于面部肌肉收缩)或颞-枕区域(由于颈部肌肉的收缩)。
在这里插入图片描述
如何消除肌电伪迹,可以通过平均叠加的方法。
在这里插入图片描述
如何消除心电伪迹,一般的方法是,在采集脑电的时候,同步采集心电信号,如果信号轨迹和心电信号相似的话,那就很可能是心电伪迹。

非生理伪迹

大部分由于脑环境和采集设备的问题
在这里插入图片描述
在这里插入图片描述

如何减轻伪迹干扰效应

Q: EEG中的伪迹会带来哪些问题?
A: 1)伪迹会降低叠加平均后ERP波形的信噪比,从而降低实验组或条件之间发现的显著差异的可能性
2)一些类型的伪迹可能不是随机的,而是系统性出现的,如某些伪迹是和刺激所定的
3)ERP实验中常见的最常见的伪迹是有眨眼和眼动引起的生理伪迹,而它们都会改变感官输入,可能是重要的混淆因素。

Q: 减轻伪迹干扰效应的两类方法
A: 1)伪迹排除:将污染的试次从叠加平均波形中排除
2)伪迹矫正:估计伪迹对ERPs的影响,然后运用矫正程序来检出估计出的伪迹成分

EEG预处理

在这里插入图片描述
基本原则:尽可能的保留数据原貌,相对原则
在这里插入图片描述

滤波

滤波,对特定频率进行有效提取,并对提取部分进行特定的处理(增益、衰减、滤除)。

  • 低通滤波:保留低于某下限的低频信号,去除或减弱高于该值的信号
  • 高通滤波:高频可以通过,去除低频
  • 带通滤波:保留某上下限值之间的信号
  • 凹陷滤波:去除某上线限之间的信号,保留在此之外的信号。
    在这里插入图片描述
    下面是高通滤波和低通滤波的一个例子,初始信号在时域和频域上如下图所示。
    在这里插入图片描述
    当使用40Hz的低通滤波来过滤掉高于40Hz的频率,信号在时域和频域上如下图所示,可以看到信号的波形变得更加光滑了。
    在这里插入图片描述
    在此基础上使用1Hz的高通滤波来过滤掉低于1Hz的频率成分,信号在时域和频域上如下图所示。
    在这里插入图片描述
    通过上面的例子,我们可以总结出高通滤波和低通滤波对波形的影响,如下图所示,高通滤波是过滤掉高于一定频率的信号,会使信号有一些失真;低通滤波是过滤掉低于一定频率的信号,会使信号波形变得平滑。
    在这里插入图片描述
    那么不同频率的高通滤波对信号有什么影响呢?下面进行了一个实验,数据均进行30Hz的低通滤波,并进行7中不同的高通滤波:DC(no filter)、0.01Hz、0.1Hz、0.3Hz、0.5Hz、0.7Hz、1Hz。可以看到,高通滤波实验的频率越高,衰减越多,而且可能会诱发一些假的波峰。
    在这里插入图片描述
    使用滤波的注意点如下:
    在这里插入图片描述

重参考

下图是几个参考的选择,没有最优选择,需要根据实验去抉择。
在这里插入图片描述
在这里插入图片描述

分段和基线矫正

比如ERP实验中,给予某种刺激后采集被试者的脑电信号,可以重复给予100次刺激,最后将这一百次采集的脑电信号进行分段平均得到最后的脑电。分段就是每次实验以刺激点为零点,选择一定的时间窗口作为一个epoch。
在这里插入图片描述
分段前的数据是二维数据(时间点x电极),分段后变为三维数据(时间点x电极xtrail)。
在这里插入图片描述

Q:什么是基线?
A:基线是指在刺激或任务开始之前的EEG信号水平,通常代表了静息或无刺激条件下的脑电活动。

基线校正的目的是将整个EEG信号的基线水平调整为零,以便更好地分析和比较不同时间点或条件下的EEG活动。这样做可以消除或减小基线偏移对后续信号处理和分析的影响。

基线校正通常通过以下步骤来实现:

  • 选择基线时段:首先,需要选择一个基线时段,这是在刺激或任务开始之前的一个时间段,通常是在刺激或任务之前的几百毫秒。基线时段应该是没有刺激或任务相关活动的平稳EEG信号。
  • 计算基线平均值:在选择的基线时段内,计算每个电极通道的平均值或中值。这个平均值或中值将被认为是基线水平。
  • 基线校正:将每个时间点的EEG信号减去对应电极通道的基线平均值。这将使基线水平被调整为零,而信号的相对变化更加突出。
    在这里插入图片描述

坏段剔除

在这里插入图片描述

坏导剔除/插值

有些电极可能由于时间问题损坏,需要剔除或者利用插值给坏电极一个值。直接剔除的缺点是会导致被试的电极数去其他被试不同,后续计算处理较麻烦;插值的缺点是会降低空间分辨率。
在这里插入图片描述

独立成分分析(ICA)

假设观测信号是由多个相互独立的成分混合而成,可以使用线性混合模型来描述这种混合过程。线性混合模型可以表示为 X = AS,其中 X 是观测信号矩阵,A 是混合矩阵,S 是独立成分矩阵。ICA的目标是估计混合矩阵 A 的逆矩阵,即 W = A^-1。这个逆矩阵用于将观测信号 X 转换为独立成分 S。独立成分矩阵 S 包含了相互独立的成分信号,每个成分信号对应一个独立的脑电活动。在这里插入图片描述
然后我们从分离出来的多个脑电活动中选择我们需要的脑电,去除噪声,比如肌电和眼动等。
在这里插入图片描述
下面是典型的噪声的伪迹
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

事件相关电位(ERPs)

在这里插入图片描述
如何获取ERPs?
需要进行多次重复刺激,然后进行分段,下图红线表示每次刺激的时间点,矩阵代表分段的时间窗口。六次实验事件分别是x、x、o、o、x、x。
在这里插入图片描述
然后对相同刺激的实验分别进行叠加求平均,得到ERPs。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/658022.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

泰迪智能科技生成式人工智能(AIGC)实验室解决方案

AIGC(Artificial Intelligence Generated Content,生成式人工智能)是一种新的人工智能技术,指的是利用人工智能技术来生成内容。这种技术可以自动生成文本、图像、音频和视频等多种类型的内容,而且内容的质量较高&…

elasticsearch在ubuntu下的配置以及简单使用

参考资料 官方下载地址 ELK学习实验002:Elasticsearch介绍及单机安装 ElasticSearch (ES从入门到精通一篇就够了) 前言 警告:elasticsearch默认不允许使用root账号来运行的,所以,强烈建议一开始就创建一个账号例如:…

Java关于Excel文件的导入导出

人生如梦 荣华富贵 如木槿之花 朝荣夕逝 需求 导出: 能够将库表内的数据导出多个Excel表,并且生成一个压缩包,提供用户下载导入: 能够将一个压缩包内的多个Excel表解压,并获取表内的所有数据 FileUtils 工具类 publi…

【开发】长期项目与代码质量,对抗软件工程复杂度(设计、重构、规范)

【开发】长期项目与代码质量,对抗软件工程复杂度(设计、重构、规范) 文章目录 一、设计模式与设计原则二、历史债务与代码重构1、技术债务的来源2、重构—无奈之举3、工程一致性:有效控制技术债务积累的主要手段 一、设计模式与设…

基于ssm和微信小程序的健身房私教预约管理系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式 🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 &…

Postman-接口测试教程

接口是软件开发中常用的概念,是软件生产过程中比较核心的任务。对于接口开发者,调试接口是一件较为繁琐的事情,很多时候需要线上线下来回切换。在这里,我就跟大家介绍一个只需要在本地就可以调试接口的方法,即使用post…

java大文件分片上传

1.效果图 2.前端html <!DOCTYPE html> <html> <head></head> <body> <form><input type"file" id"fileInput" multiple><button type"button" onclick"upload()" >大文件分片上传&l…

计算机网络_1.3电路交换、分组交换和报文交换

1.3电路交换、分组交换和报文交换 一、电路交换1、“电路交换”例子引入2、电路交换的三个阶段3、计算机之间的数据传送不适合采用电路交换 二、分组交换1、发送方&#xff08;1&#xff09;报文&#xff08;2&#xff09;分组&#xff08;3&#xff09;首部 2、交换节点3、接收…

LeetCode 使循环数组所有元素相等的最少秒数

地址&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 难度&#xff1a;中等 题目描述&#xff1a;给你一个下标从 0 开始长度为 n 的数组 nums 。 每一秒&#xff0c;你可以对数组执行以下操作&#xff1a; 对于范围在 [0, n - 1] 内的每…

代码随想录算法训练营第二十二天 |235. 二叉搜索树的最近公共祖先,701.二叉搜索树中的插入操作,450.删除二叉搜索树中的节点(待补充)

235.二叉搜索树的最近公共祖先 1、题目链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 2、文章讲解&#xff1a;代码随想录 3、题目&#xff1a; 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公…

深入理解二叉树:遍历、构建与性质探索的代码实现

&#x1f4f7; 江池俊&#xff1a; 个人主页 &#x1f525;个人专栏&#xff1a; ✅数据结构冒险记 ✅C语言进阶之路 &#x1f305; 有航道的人&#xff0c;再渺小也不会迷途。 文章目录 前言一、二叉树的存储结构二、二叉树链式结构的实现三、二叉树的前、中、后续遍历&…

【数据结构 07】AVL树

目录 一、二叉搜索树 二、AVL树 2.1 左单旋 2.2 右单旋 2.3 左右双旋 2.4 右左双旋 三、AVL.h 四、test.cpp 一、二叉搜索树 二叉搜索树&#xff0c;又称二叉排序树&#xff08;Binary Search Tree&#xff09;&#xff0c;相比于普通二叉树&#xff0c;BST的特性有&a…

UE5 C++ 读取本地图片并赋值到UI上

目录 结果图 节点样式 主要代码 调试代码 结果图 节点样式 主要代码 &#xff08;注释纯属个人理解&#xff0c;可能存在错误&#xff09; // Fill out your copyright notice in the Description page of Project Settings.#pragma once#include "CoreMinimal.h&q…

Java面向对象详解

面向对象和面向过程的区别&#xff1a; 面向对象和面向过程都是对软件分析、设计和开发的一种思想&#xff0c;它指导着人们以不同的方式去分析、设计和开发软件。C语言是一种典型的面向过程语言&#xff0c;Java是一种典型的面向对象语言。 面向过程适合简单、不需要协作的事务…

Optimism的挑战期

1. 引言 前序博客&#xff1a; Optimism的Fault proof 用户将资产从OP主网转移到以太坊主网时需要等待一周的时间。这段时间称为挑战期&#xff0c;有助于保护 OP 主网上存储的资产。 而OP测试网的挑战期仅为60秒&#xff0c;以简化开发过程。 2. OP与L1数据交互 L1&#xf…

探索智能巡检机器人深度学习的奥秘

机器人深度学习&#xff08;Robot Deep Learning&#xff09;是指利用深度学习技术&#xff0c;使机器人能够从大量数据中学习和提取特征&#xff0c;进而实现自主感知、决策和行动的能力。通过深度学习算法&#xff0c;机器人可以从传感器获取的数据中自动学习模式和规律&…

微信开放平台第三方开发,实现代小程序认证申请

大家好&#xff0c;我是小悟 微信小程序认证整体流程总共分为五个环节&#xff1a;认证信息填写、平台初审、管理员验证、供应商审核和认证成功。 服务商可以代小程序发起认证申请。平台将对认证基础信息进行初步校验。通过后&#xff0c;平台将向管理员微信下发模板消息&…

Redis(十)SpringBoot集成Redis

文章目录 连接单机mvnYMLController.javaRedisConfig.java 连接集群YML问题复现 RedisTemplate方式 连接单机 mvn <!--Redis--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</art…

SRC实战 | 信息泄露挖掘

本文由掌控安全学院 - 叴龙 投稿 1. 信息搜集 首先老语法先搜集一波&#xff0c;毕竟没有钓鱼和sg的能力&#xff0c;只能找注册站去挖挖了。 web.title”XX大学”&&web.body”忘记密码”&&web.body”注册” 2. 漏洞挖掘 这里找到一个可以注册网站接口&…

蓝桥杯 第 1 场 小白入门赛

目录 1.蘑菇炸弹 2.构造数字 3.小蓝的金牌梦 4.合并石子加强版 5.简单的LIS问题 6.期望次数 1.蘑菇炸弹 我们直接依照题目 在中间位置的数进行模拟即可 void solve(){cin>>n;vector<int> a(n1);for(int i1;i<n;i) cin>>a[i];int ans0;for(int i2;i…