算法沉淀——二分查找(leetcode真题剖析)

在这里插入图片描述

算法沉淀——二分查找

  • 01.二分查找
  • 02.在排序数组中查找元素的第一个和最后一个位置
  • 03.搜索插入位置
  • 04.x 的平方根
  • 05.山脉数组的峰顶索引
  • 06.寻找峰值
  • 07.寻找旋转排序数组中的最小值
  • 08.LCR 173. 点名

二分查找(Binary Search)是一种在有序数组中查找特定元素的算法。该算法的基本思想是通过每一次比较,将查找范围缩小一半,最终找到目标元素或者确定目标元素不存在。

二分查找的步骤

  1. 初始化: 定义两个指针,leftright,分别指向数组的起始和结束位置。
  2. 循环条件:left <= right 的条件下,执行以下步骤。
  3. 计算中间位置: 计算中间位置的索引 mid,可以使用 mid = (left + right) / 2 或者 mid = left + (right - left) / 2。这样可以防止整数溢出。
  4. 比较中间元素: 将目标元素与数组中间位置的元素进行比较。
    • 如果目标元素等于中间元素,查找成功,返回中间元素的索引。
    • 如果目标元素小于中间元素,说明目标元素可能在左半部分,更新 right = mid - 1
    • 如果目标元素大于中间元素,说明目标元素可能在右半部分,更新 left = mid + 1
  5. 重复步骤: 回到步骤 3,直到 left 大于 right,此时查找范围为空,表示目标元素不存在。

二分查找的优势

  • 效率高: 由于每一次比较都将查找范围减半,二分查找的时间复杂度是 O(log n),其中 n 是数组的长度。
  • 适用条件: 二分查找要求数组必须是有序的,但在有序数组中查找元素时,它是一种非常高效的算法。

二分查找的局限性

  • 必须有序(大多数情况下): 二分查找要求数组是有序的,如果数组是无序的,需要先进行排序。
  • 不适用于链表: 二分查找通常用于数组,对于链表结构,由于无法直接通过下标访问元素,不太适用。
  • 只能查找特定值: 二分查找主要用于查找特定值,对于查找范围不明确的情况,可能不太合适。

二分查找的应用场景

  • 在有序数组中查找特定元素。
  • 寻找有序数组中的上下界。
  • 在数值范围内寻找满足条件的值。

二分查找基本模板

朴素版(适用于最基础的二分)

while(left<=right){int mid=left+(right-left)/2;if(条件)left=mid+1;else if(条件)right=mid-1;elsereturn ...;
}

全能版(均可适用)

①查找左边界

while(left<right){int mid=left+(right-left)/2;if(条件)left=mid+1;elseright=mid;
}

②查找右边界

while(left<right){int mid=left+(right-left+1)/2;if(条件)left=mid;elseright=mid-1;
}

全能版的写法需要根据不同的情况做出相应改变,比如这里的中间值为什么要+1再除,是因为最下面的条件mid-1,如果没有-1,那么上面也不需要+1,这样做是为了防止进入死循环,这个模板仅供参考,切勿死记硬背,实践出真知,适合自己的才最重要。

01.二分查找

题目链接:https://leetcode.cn/problems/binary-search/

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1
示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1

思路

这里就是最基础的朴素二分,我们直接写上去就可以了,不熟悉二分最好自己动手写一遍,对后面的二分题就会有更深入的了解,打牢基础。

  1. 初始化两个指针 leftright 分别指向数组的起始位置和结束位置。
  2. while 循环中,通过计算中间位置 mid(避免整数溢出的写法),对比中间元素与目标元素的大小关系,从而缩小查找范围。
    • 如果 nums[mid] > target,说明目标元素可能在左半部分,更新 right = mid - 1
    • 如果 nums[mid] < target,说明目标元素可能在右半部分,更新 left = mid + 1
    • 如果 nums[mid] == target,找到目标元素,返回 mid
  3. 循环直到 left 大于 right,此时查找范围为空,返回 -1 表示目标元素不存在。

代码

class Solution {
public:int search(vector<int>& nums, int target) {int left=0,right=nums.size()-1;while(left<=right){int mid = left+(right-left)/2;if(nums[mid]>target) right=mid-1;else if(nums[mid]<target) left=mid+1;else return mid;}return -1;}
};

02.在排序数组中查找元素的第一个和最后一个位置

题目链接:https://leetcode.cn/problems/find-first-and-last-position-of-element-in-sorted-array/

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

思路

这里题目指定时间复杂度为 O(log n) 的算法,说明就是要让我们使用二分的算法,这里需要注意两个问题,第一个是边界问题,避免死循环,第二就是这里找两个值,我们可以分成两个二分来找,这样我们可以将逻辑捋清楚,这里模板中左边界与有边界两个版本都能用上。

  1. 首先,判断数组是否为空,如果为空,则直接返回 {-1, -1},表示目标元素不存在于数组中。
  2. 利用二分查找找到目标元素的起始位置,首先在数组中找到第一个大于等于 target 的元素的位置。这个过程通过维护两个指针 leftright,在循环中不断缩小查找范围,最终 left 的位置就是目标元素的起始位置。
  3. 如果找到的 nums[left] 不等于 target,说明目标元素不存在,返回 {-1, -1}。
  4. 如果找到了目标元素的起始位置 begin,则重置 leftright,利用二分查找找到目标元素的结束位置。在这一步中,找到第一个大于 target 的位置的前一个位置,即 right
  5. 返回结果,即目标元素的起始位置和结束位置。

代码

class Solution {
public:vector<int> searchRange(vector<int>& nums, int target) {if(!nums.size()) return {-1,-1};int left=0,right=nums.size()-1;while(left<right){int mid=left+(right-left)/2;if(nums[mid]<target) left=mid+1;else right=mid;}if(nums[left]!=target) return {-1,-1};int begin=left;left=0,right=nums.size()-1;while(left<right){int mid=left+(right-left+1)/2;if(nums[mid]<=target) left=mid;else right=mid-1;}return {begin,right};}
};

03.搜索插入位置

题目链接:https://leetcode.cn/problems/search-insert-position/

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4

思路

和上一题一样,题目指定时间复杂度为 O(log n) 的算法,说明就是要让我们使用二分的算法,这里我们直接使用左边界二分即可,注意边界问题,比如target值大于最后一个值,需要考虑。

  1. 初始化两个指针 leftright 分别指向数组的起始位置和结束位置。
  2. while 循环中,通过计算中间位置 mid(避免整数溢出的写法),对比中间元素与目标元素的大小关系,从而缩小查找范围。
    • 如果 nums[mid] < target,说明目标元素可能在右半部分,更新 left = mid + 1
    • 如果 nums[mid] >= target,说明目标元素可能在左半部分,更新 right = mid
  3. 循环直到 left >= right,此时 left 就是插入位置,因为 left 所指的元素是第一个大于或等于 target 的元素。
  4. 最后判断 nums[left]target 的关系:
    • 如果 nums[left] < target,则插入位置在 left + 1
    • 否则,插入位置在 left
  5. 返回插入位置。

代码

class Solution {
public:int searchInsert(vector<int>& nums, int target) {int left=0,right=nums.size()-1;while(left<right){int mid = left+(right-left)/2;if(nums[mid]<target) left=mid+1;else right=mid;}if(nums[left]<target) return left+1;return left;}
};

04.x 的平方根

题目链接:https://leetcode.cn/problems/sqrtx/

给你一个非负整数 x ,计算并返回 x算术平方根

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

**注意:**不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5

示例 1:

输入:x = 4
输出:2

示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。

思路

这里我们使用二分是在暴力循环的基础上改进而来的,需要注意的是边界问题和溢出问题

  1. 首先,判断 x 的值,如果小于 1,则直接返回 0,因为在非负整数范围内不存在小于 1 的平方根。
  2. 初始化两个指针 leftright,分别指向 1 和 x
  3. while 循环中,通过计算中间位置 mid(使用 (right - left + 1) / 2 避免整数溢出),对比中间元素的平方与 x 的大小关系,从而缩小查找范围。
    • 如果 mid * mid <= x,说明目标平方根可能在右半部分,更新 left = mid
    • 如果 mid * mid > x,说明目标平方根可能在左半部分,更新 right = mid - 1
  4. 循环直到 left >= right,此时 leftright 就是平方根的整数部分。
  5. 返回 right

代码

class Solution {
public:int mySqrt(int x) {if(x<1) return 0;int left=1,right=x;while(left<right){long long mid = left+(right-left+1)/2;if(mid*mid<=x) left=mid;else right=mid-1;}return right;}
};

05.山脉数组的峰顶索引

题目链接:https://leetcode.cn/problems/peak-index-in-a-mountain-array/

符合下列属性的数组 arr 称为 山脉数组

  • arr.length >= 3
  • 存在i(0 < i < arr.length - 1)使得:
    • arr[0] < arr[1] < ... arr[i-1] < arr[i]
    • arr[i] > arr[i+1] > ... > arr[arr.length - 1]

给你由整数组成的山脉数组 arr ,返回满足 arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1] 的下标 i

你必须设计并实现时间复杂度为 O(log(n)) 的解决方案。

示例 1:

输入:arr = [0,1,0]
输出:1

示例 2:

输入:arr = [0,2,1,0]
输出:1

示例 3:

输入:arr = [0,10,5,2]
输出:1

思路

看到这题很多并不会想到使用二分去做,因为概念里写的使用二分一定要有序,但是这里是可以使用二分的思想来做这道题的,所以我们要将思路打开,根据题意这里山顶不会是左右的边界值,所以这里我们只要使用二分找出数组的最大值就行了

  1. 初始化两个指针 leftright,分别指向二分的起始位置和结束位置(边界不需要考虑)。
  2. while 循环中,通过计算中间位置 mid(使用 (right - left) / 2 避免整数溢出),对比中间元素与其右侧元素的大小关系,从而缩小查找范围。
    • 如果 arr[mid] < arr[mid + 1],说明峰值可能在右半部分,更新 left = mid + 1
    • 如果 arr[mid] >= arr[mid + 1],说明峰值可能在左半部分,更新 right = mid
  3. 循环直到 left >= right,此时 leftright 就是山脉数组的峰值。
  4. 返回 right

这个算法的核心思想是通过二分查找,在山脉数组中找到峰值的索引。在山脉数组中,峰值是指一个位置左侧的元素严格单调递增,右侧的元素严格单调递减的位置。因此,通过比较中间元素与其右侧元素的大小关系,可以缩小查找范围,最终找到峰值的位置。

代码

class Solution {
public:int peakIndexInMountainArray(vector<int>& arr) {int left=1,right=arr.size()-2;while(left<right){int mid = left+(right-left)/2;if(arr[mid]<arr[mid+1]) left=mid+1;else right=mid;}return right;}
};

06.寻找峰值

题目链接:https://leetcode.cn/problems/find-peak-element/

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设 nums[-1] = nums[n] = -∞

你必须实现时间复杂度为 O(log n) 的算法来解决此问题。

示例 1:

输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。

示例 2:

输入:nums = [1,2,1,3,5,6,4]
输出:1 或 5 
解释:你的函数可以返回索引 1,其峰值元素为 2;或者返回索引 5, 其峰值元素为 6。

思路

基本和上一题的二分思想是一致的,但是这里需要考虑边界问题,因此不能直接去除首尾。

  1. 初始化两个指针 leftright,分别指向数组的起始位置和结束位置。
  2. while 循环中,通过计算中间位置 mid(使用 (right - left) / 2 避免整数溢出),对比中间元素与其右侧元素的大小关系,从而缩小查找范围。
    • 如果 nums[mid] < nums[mid + 1],说明峰值可能在右半部分,更新 left = mid + 1
    • 如果 nums[mid] >= nums[mid + 1],说明峰值可能在左半部分,更新 right = mid
  3. 循环直到 left >= right,此时 leftright 就是无序数组的峰值。
  4. 返回 left

代码

class Solution {
public:int findPeakElement(vector<int>& nums) {int left=0,right=nums.size()-1;while(left<right){int mid = left+(right-left)/2;if(nums[mid]<nums[mid+1]) left=mid+1;else right=mid;}return left;}
};

07.寻找旋转排序数组中的最小值

题目链接:https://leetcode.cn/problems/find-minimum-in-rotated-sorted-array/

已知一个长度为 n 的数组,预先按照升序排列,经由 1n旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

  • 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
  • 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]]

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。

示例 2:

输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 3 次得到输入数组。

示例 3:

输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。

思路

这里我们使用二分法使用中间值与最右边的值相比较,若中间值大,说明最小值一定在右边,反之在左边,这里使用二分法不用考虑数组旋转了几次。

  1. 初始化两个指针 leftright,分别指向数组的起始位置和结束位置。
  2. 记录数组最右侧元素的值为 x,作为旋转的轴。这个轴元素是数组的最小元素。
  3. while 循环中,通过计算中间位置 mid(使用 (right - left) / 2 避免整数溢出),对比中间元素与 x 的大小关系,从而缩小查找范围。
    • 如果 nums[mid] > x,说明最小元素可能在右半部分,更新 left = mid + 1
    • 如果 nums[mid] <= x,说明最小元素可能在左半部分或就是 mid 位置,更新 right = mid
  4. 循环直到 left >= right,此时 leftright 就是数组中的最小元素所在的位置。
  5. 返回 nums[left]

代码

class Solution {
public:int findMin(vector<int>& nums) {int left=0,right=nums.size()-1;int x=nums[right];while(left<right){int mid=left+(right-left)/2;if(nums[mid]>x) left=mid+1;else right=mid;}return nums[left];}
};

08.LCR 173. 点名

题目链接:https://leetcode.cn/problems/que-shi-de-shu-zi-lcof/

某班级 n 位同学的学号为 0 ~ n-1。点名结果记录于升序数组 records。假定仅有一位同学缺席,请返回他的学号。

示例 1:

输入: records = [0,1,2,3,5]
输出: 4

示例 2:

输入: records = [0, 1, 2, 3, 4, 5, 6, 8]
输出: 7

思路

这道题其实有多种解法,我们使用二分解决可以效率非常高,这里只需要注意边界问题,即最大学号缺席。

  1. 初始化两个指针 leftright,分别指向数组的起始位置和结束位置。
  2. while 循环中,通过计算中间位置 mid(使用 (right - left) / 2 避免整数溢出),对比中间元素 records[mid]mid 的大小关系,从而缩小查找范围。
    • 如果 records[mid] == mid,说明漏考勤的学生可能在右半部分,更新 left = mid + 1
    • 如果 records[mid] != mid,说明漏考勤的学生可能在左半部分或就是 mid 位置,更新 right = mid
  3. 循环直到 left >= right,此时 leftright 就是漏考勤的学生的位置。
  4. 返回 right == records[right] ? right + 1 : right

代码

class Solution {
public:int takeAttendance(vector<int>& records) {int left=0,right=records.size()-1;while(left<right){int mid = left + (right-left)/2;if(records[mid]==mid) left=mid+1;else right=mid;}return right==records[right]?right+1:right;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/654927.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法专题】二分查找(入门)

&#x1f4d1;前言 本文主要是二分查找&#xff08;入门&#xff09;的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是青衿&#x1f947; ☁️博客首页&#xff1a;CSDN主页放风讲故事 &#x1f304;每日…

幻兽帕鲁服务器怎么收费?4核16G配置

幻兽帕鲁服务器价格多少钱&#xff1f;4核16G服务器Palworld官方推荐配置&#xff0c;阿里云4核16G服务器32元1个月、96元3个月&#xff0c;腾讯云换手帕服务器服务器4核16G14M带宽66元一个月、277元3个月&#xff0c;8核32G22M配置115元1个月、345元3个月&#xff0c;16核64G3…

前言:穿越迷雾,探索C语言指针的奇幻之旅

各位少年&#xff0c;大家好&#xff0c;我是博主那一脸阳光&#xff0c;今天给大家分享指针&#xff0c;内存和地址的使用&#xff0c;以及使用。 前言&#xff1a; 在编程的世界中&#xff0c;若论灵活多变、深邃神秘的角色&#xff0c;非“指针”莫属。如同哈利波特手中的魔…

深度学习快速入门--7天做项目

深度学习快速入门--7天做项目 0. 引言1. 本文内容2. 深度学习是什么3. 项目是一个很好的切入点4. 7天做项目4.1 第一天&#xff1a;数据整理4.2 第二天&#xff1a;数据处理4.3 第三天&#xff1a;简单神经网络设计4.4 第四天&#xff1a;分析效果与原因4.5 第五天&#xff1a;…

基于SpringBoot的玩具租赁系统

文章目录 项目介绍主要功能截图&#xff1a;部分代码展示设计总结项目获取方式 &#x1f345; 作者主页&#xff1a;超级无敌暴龙战士塔塔开 &#x1f345; 简介&#xff1a;Java领域优质创作者&#x1f3c6;、 简历模板、学习资料、面试题库【关注我&#xff0c;都给你】 &…

【原创课程】KUKA机器人与S7-1200进行Profinet通讯

一、KUKA机器人与S7-1200进行Profinet通讯 1、硬件配置 ①硬件配置 名称 型号 数量 PLC S7_1217C 1个 机器人 KUKA_KR-210 1台 2、机器人一侧参数配置 ①添加备选软件包 首先&#xff0c;从KUKA机器人控制柜中将KOP备选软件包拷贝出来&#xff0c;然后在”WorkVi…

【lodash.js】非常好用高性能的 JavaScript 实用工具库,防抖,深克隆,排序等

前言&#xff1a;lodash是一款前端必须要知道的js库&#xff0c;它里面提供了许多常用的功能和实用的工具函数 基本上我参与的项目中都有lodash&#xff0c;只能说lodash太强大了&#xff0c;lodash.js 提供了超过 300 个实用的工具函数&#xff0c;涵盖了很多常见的编程任务 l…

【ascii码对照表】

计算机各种表 ascii码表BCD码&#xff08;Binary-Coded Decimal‎&#xff09;有权码-8421码有权码-2421码有权码-5421码无权码-余3码无权码-余3循环码无权码-格雷码 ascii码表 BCD码&#xff08;Binary-Coded Decimal‎&#xff09; BCD码也称二进码十进数 BCD用4位二进制数来…

数字图像处理(实践篇)三十六 OpenCV-Python 使用ORB和BFmatcher对两个输入图像的关键点进行匹配实践

目录 一 涉及的函数 二 实践 ORB(Oriented FAST and Rotated BRIEF)是一种特征点检测和描述算法,它结合了FAST关键点检测和BRIEF描述子。ORB算法具有以下优势: ①实时性:能够在实时应用中进行快速的特征点检测和描述。 ②

Windows系统云服务器自定义域名解析导致网站无法访问怎么解决?

本文九河云介绍Windows实例内部自定义域名解析与本地网络域名解析不一致导致无法访问网站的问题描述、问题原因和解决方案。 问题描述 在Windows实例内部通过浏览器无法访问某网站&#xff0c;但在其他设备上可以正常访问&#xff0c;排查发现Windows实例内部自定义域名解析与…

网络安全科普:SSL证书保护我们的网上冲浪安全

当我们在线上愉快冲浪时&#xff0c;各类网站数不胜数&#xff0c;但是如何判定该站点是安全还是有风险呢&#xff1f; 当当当&#xff0c;SSL数字证书登场&#xff01;&#xff01; SSL证书也称为数字证书&#xff0c;是一种用于保护网站和用户之间通信安全的加密协议。由权…

Python基础语法——数据输入(input语句)

一、引言 在Python编程中&#xff0c;数据的输入是一个基础且重要的环节。Python的input()函数允许用户从控制台输入数据&#xff0c;是Python中获取用户输入的主要方式。本文将详细解析input()函数的工作原理&#xff0c;以及如何处理和验证用户输入。 二、input()函数的工作…

Mac安装nvm,安装多个不同版本node,指定node版本

一.安装nvm brew install nvm二。配置文件 touch ~/.zshrc echo export NVM_DIR~/.nvm >> ~/.zshrc echo source $(brew --prefix nvm)/nvm.sh >> ~/.zshrc三.查看安装版本 nvm -vnvm常用命令如下&#xff1a;nvm ls &#xff1a;列出所有已安装的 node 版本nvm…

【网络】传输层TCP协议 | 三次握手 | 四次挥手

目录 一、概述 2.1 运输层的作用引出 2.2 传输控制协议TCP 简介 2.3 TCP最主要的特点 2.4 TCP连接 二、TCP报文段的首部格式 三、TCP的运输连接管理 3.1 TCP的连接建立(三次握手) 3.2 为什么是三次握手&#xff1f; 3.3 为何两次握手不可以呢&#xff1f; 3.4 TCP的…

AF647 二苯并环辛炔,AF647-DBCO,一种明亮且可感光的远红色染料

您好&#xff0c;欢迎来到新研之家 文章关键词&#xff1a;AF647 二苯并环辛炔&#xff0c;AF647 DBCO&#xff0c;Alexa Fluor 647 DBCO&#xff0c;AF647-二苯并环辛炔&#xff0c;AF647-DBCO 一、基本信息 产品简介&#xff1a;Alexa Fluor 647是一种独特的远红色染料&am…

2024-01-24-redis4

秒杀活动 需求&#xff1a;库存中有10件商品 商品的信息自定义 同时有100个人去抢购&#xff08;这里100个人的抢购由jmeter来模拟&#xff09; jmeter的使用 在idea中将后台代码实现 package org.aaa.controller;import org.apache.commons.lang3.StringUtils; import org.sp…

ORBSLAM3 运行流程 以rgbd_tum.cc函数为例进行分析

一、运行 使用的是D435i相机自己录制的数据。 运行命令&#xff1a; ./Examples/RGB-D/rgbd_tum /opt/vslam/ORB_SLAM3_detailed_comments-dense_map_new/Vocabulary/ORBvoc.txt /opt/vslam/ORB_SLAM3_detailed_comments-dense_map_new/Examples/RGB-D/TUM1.yaml /opt/vsl…

docker-compose部署单机ES+Kibana

记录部署的操作步骤 准备工作编写docker-compose.yml启动服务验证部署结果 本次elasticsearch和kibana版本为8.2.2 使用环境&#xff1a;centos7.9 本次记录还包括&#xff1a;安装elasticsearch中文分词插件和拼音分词插件 准备工作 1、创建目录和填写配置 mkdir /home/es/s…

基于springboot网上图书商城源码和论文

在Internet高速发展的今天&#xff0c;我们生活的各个领域都涉及到计算机的应用&#xff0c;其中包括网上图书商城的网络应用&#xff0c;在外国网上图书商城已经是很普遍的方式&#xff0c;不过国内的管理网站可能还处于起步阶段。网上图书商城具有网上图书信息管理功能的选择…

Spring Security的入门案例!!!

一、导入依赖 <dependencies><!--web--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!--security--><dependency><groupId>…