AWS 专题学习 P10 (Databases、 Data Analytics)

文章目录

  • 专题总览
  • 1. Databases
    • 1.1 选择合适的数据库
    • 1.2 数据库类型
    • 1.3 AWS 数据库服务概述
      • Amazon RDS
      • Amazon Aurora
      • Amazon ElastiCache
      • Amazon DynamoDB
      • Amazon S3
      • DocumentDB
      • Amazon Neptune
      • Amazon Keyspaces (for Apache Cassandra)
      • Amazon QLDB
      • Amazon Timestream
  • 2. Data & Analytics
    • 2.1 Amazon Athena
      • Amazon Athena – 性能优化
      • Amazon Athena – Federated Query (联合查询)
    • 2.2 Redshift 概述
      • Redshift 集群
      • Redshift – 快照&灾难恢复
      • Loading data into Redshift: Large inserts are MUCH better
      • Redshift Spectrum
    • 2.3 Amazon OpenSearch Service
      • OpenSearch patterns - DynamoDB
      • OpenSearch patterns - CloudWatch Logs
      • OpenSearch patterns - Kinesis Data Streams & Kinesis Data Firehose
    • 2.4 Amazon EMR
      • Amazon EMR - 节点类型和购买方式
    • 2.5 Amazon QuickSight
      • QuickSight 集成
      • QuickSight - 仪表板和分析
    • 2.6 AWS Glue
      • AWS Glue - 将数据转换为 Parquet 格式
      • Glue 数据目录:数据集的目录
      • Glue - 高层次概述
    • 2.7 AWS Lake Formation
      • Centralized Permissions Example
    • 2.8 Kinesis Data Analytics 用于 SQL 应用程序
      • Kinesis Data Analytics(SQL 应用程序)
      • Kinesis Data Analytics 用于 Apache Flink
    • 2.9 Amazon Managed Streaming for Apache Kafka(Amazon MSK)
      • Apache Kafka 概述
      • Kinesis Data Streams v.s. Amazon MSK
      • Amazon MSK 消费者
      • 大数据摄取流程
      • 大数据摄取流程讨论

专题总览

包含专题内容总览和系列博客目录
https://blog.csdn.net/weixin_40815218/article/details/135590291

1. Databases

1.1 选择合适的数据库

  • 在AWS上有很多托管的数据库可供选择
  • 根据架构选择合适的数据库的问题:
  • 读重、写重还是平衡工作负载?吞吐量需求?它会改变吗,在一天中需要进行扩展或波动吗?
  • 存储多少数据以及存储多长时间?它会增长吗?平均对象大小?它们如何访问?
  • 数据的持久性?数据的真实来源?
  • 延迟要求?并发用户?
  • 数据模型?如何查询数据?连接?结构化?半结构化?
  • 强类型模式?更灵活?报告?搜索?关系型数据库/NoSQL?
  • 许可证成本?切换到云原生数据库,如Aurora?

1.2 数据库类型

  • 关系型数据库(SQL / OLTP):RDS,Aurora-适用于连接
  • NoSQL数据库-无连接,无SQL:DynamoDB(~ JSON),ElastiCache(键/值对),Neptune(图形),DocumentDB(用于MongoDB),Keyspaces(用于Apache Cassandra)
  • 对象存储:S3(用于大对象)/ Glacier(用于备份/存档)
  • 数据仓库(SQL分析/ BI):Redshift(OLAP),Athena,EMR
  • 搜索:OpenSearch(JSON)-全文搜索,非结构化搜索
  • 图形:Amazon Neptune-显示数据之间的关系
  • 分类帐:Amazon Quantum Ledger数据库
  • 时间序列:Amazon Timestream
  • 注意:某些数据库在数据和分析部分讨论

1.3 AWS 数据库服务概述

Amazon RDS

  • 托管的 PostgreSQL / MySQL / Oracle / SQL Server / MariaDB /自定义
  • 预置的 RDS 实例大小和EBS卷类型和大小
  • 存储的自动扩展功能
  • 支持读副本和多个可用区
  • 通过 IAM,安全组,KMS,SSL 在传输中提供安全性
  • 带有特定时间恢复功能(最多35天)的自动备份
  • 长期恢复的手动数据库快照
  • 托管和计划维护(有停机时间)
  • 支持 IAM 身份验证,与 Secrets Manager 集成
  • RDS Custom 用于访问和自定义基础实例(Oracle和SQL Server)
  • 用例:存储关系数据集(RDBMS / OLTP),执行 SQL 查询,事务

Amazon Aurora

  • 兼容 PostgreSQL / MySQL 的 API,存储和计算分离
  • 存储:数据存储在6个副本中,跨3个可用区-高可用性,自愈,自动扩展
  • 计算:多个可用区的 DB 实例群集,读取副本的自动扩展
  • 群集:编写器和读取器 DB 实例的自定义端点
  • 与 RDS 相同的安全性/监控/维护功能
  • 了解 Aurora 的备份和恢复选项
  • Aurora Serverless-用于不可预测/间歇工作负载,无需容量规划
  • Aurora Multi-Master-用于连续写入故障转移(高写入可用性)
  • Aurora Global:每个区域最多16个DB读取实例,<1秒存储复制
  • Aurora Machine Learning:在 Aurora 上使用 SageMaker 和 Comprehend 执行 ML
  • Aurora 数据库克隆:从现有数据库创建新集群,比恢复快照更快
  • 用例:与 RDS 相同,但维护更少/更灵活/性能更好/功能更多

Amazon ElastiCache

  • 托管的 Redis / Memcached(与 RDS 类似,但用于缓存)
  • 内存数据存储,亚毫秒延迟
  • 必须预置 EC2 实例类型
  • 支持集群(Redis)和多 AZ、读副本(分片)
  • 通过 IAM、安全组、KMS、Redis Auth 实现安全性
  • 备份/快照/按时间点还原功能
  • 托管和计划维护
  • 需要对应用程序代码进行一些更改以发挥作用
  • 用例:键值存储,频繁读取,较少写入,缓存数据库查询结果,存储网站的会话数据,不能使用 SQL。

Amazon DynamoDB

  • AWS 的专有技术,托管的无服务器 NoSQL 数据库,毫秒级延迟
  • 容量模式:预置容量可选择自动扩展或按需容量
  • 可以替代 ElastiCache 作为键/值存储(例如存储会话数据,使用 TTL 功能)
  • 高可用性,默认多 AZ,读写解耦,支持事务
  • 用于读取缓存的 DAX 集群,微秒级读取延迟
  • 安全性通过 IAM 进行身份验证和授权
  • 事件处理:DynamoDB Streams 与 AWS Lambda 或 Kinesis 数据流集成
  • 全局表功能:主动-主动设置
  • 自动备份最长可保留 35 天,可进行 PITR(还原到新表)或按需备份
  • 在 PITR 窗口内使用 S3 导出时无需使用 RCU,在 PITR 窗口内从 S3 导入时无需使用 WCU
  • 非常适合快速演变的模式
  • 用例:无服务器应用程序开发(小型文档 100 KB),分布式无服务器缓存,不具备 SQL 查询语言

Amazon S3

  • S3 是一个…对象的键/值存储
  • 适用于较大的对象,对于许多小对象效果不佳
  • 无服务器,无限扩展,最大对象大小为 5 TB,支持版本控制
  • 层级:S3 标准,S3 低频访问,S3 智能层,S3 Glacier + 生命周期策略
  • 功能:版本控制,加密,复制,MFA-Delete,访问日志…
  • 安全性:IAM,存储桶策略,ACL,访问点,对象/保险库锁定,CORS,对象/保险库锁定
  • 加密:SSE-S3,SSE-KMS,SSE-C,客户端端加密,传输中的 TLS,默认加密
  • 使用 S3 Batch 进行对象批量操作,使用 S3 Inventory 列出文件
  • 性能:分块上传,S3 传输加速,S3 Select
  • 自动化:S3 事件通知(SNS,SQS,Lambda,EventBridge)
  • 用例:静态文件,大文件的键值存储,网站托管

DocumentDB

  • Aurora 是 PostgreSQL / MySQL 的 “AWS 实现”…
  • DocumentDB 是 MongoDB 的同类产品(一种 NoSQL 数据库)
  • MongoDB 用于存储、查询和索引 JSON 数据
  • 与 Aurora 类似的 “部署概念”
  • 完全托管,高可用性,跨 3 个 AZ 复制
  • DocumentDB 存储自动以 10GB 为增量增长,最高可达 64TB
  • 可以自动扩展以处理每秒数百万个请求的工作负载

Amazon Neptune

  • 完全托管的图数据库
  • 一个受欢迎的图数据集可以是一个社交网络
  • 用户有朋友
  • 帖子有评论
  • 评论有用户的点赞
  • 用户分享和点赞帖子…
  • 在 3 个 AZ 上高可用,并可拥有多达 15 个读副本
  • 构建和运行处理高度连接数据集的应用程序-针对这些复杂且难以查询的优化
  • 可以存储数十亿个关系并以毫秒级延迟查询图形
  • 非常适合知识图谱(维基百科)、欺诈检测、推荐引擎、社交网络Screenshot 2023-08-17 at 06.30.24.png

Amazon Keyspaces (for Apache Cassandra)

  • Apache Cassandra 是一个开源的分布式 NoSQL 数据库
  • 一个托管的兼容 Apache Cassandra 的数据库服务
  • 无服务器、可扩展、高可用、由 AWS 完全托管
  • 根据应用程序的流量自动扩展表格的容量
  • 表格在多个可用区内复制 3 次
  • 使用 Cassandra 查询语言 (CQL)
  • 无论规模如何,都可以实现单位数字毫秒级延迟,每秒处理数千个请求
  • 容量:按需模式或预置模式与自动缩放
  • 加密、备份、35 天的 PITR(时间点恢复)
  • 用例:存储物联网设备信息、时间序列数据…

Amazon QLDB

  • QLDB 代表 “Quantum Ledger Database”(量子账本数据库)

  • 账本是记录财务交易的账簿

  • 完全托管、无服务器、高可用、在 3 个可用区中进行复制

  • 用于查看应用程序数据随时间所有更改的历史记录

  • 不可变系统:不能删除或修改任何条目,具有密码学验证!在这里插入图片描述

  • 性能比常见的账本区块链框架提高 2-3 倍,使用 SQL 操作数据

  • 与 Amazon Managed Blockchain 的区别:没有去中心化组件,符合金融监管规定

Amazon Timestream

  • 完全托管、快速、可扩展、无服务器的时间序列数据库
  • 自动调整容量进行扩缩
  • 存储和分析每天的数万亿个事件
  • 比关系型数据库快数千倍,成本只有其十分之一
  • 定时查询、多度量记录、SQL 兼容
  • 数据存储分层:近期数据存储在内存中,历史数据存储在成本优化的存储中
  • 内置时间序列分析函数(帮助您在几乎实时中识别数据模式)
  • 在传输和静止状态下进行加密
  • 用例:物联网应用程序、运营应用程序、实时分析…
    在这里插入图片描述

Amazon Timestream – Architecture

Screenshot 2023-08-17 at 06.29.07.png

2. Data & Analytics

2.1 Amazon Athena

  • 无服务器查询服务,用于分析存储在 Amazon S3 中的数据
  • 使用标准SQL语言查询文件(基于 Presto 构建)
  • 支持 CSV、JSON、ORC、Avro 和 Parquet 格式
  • 定价:每TB数据扫描费用为$5.00
  • 常与 Amazon Quicksight 一起用于报表/仪表盘
  • 用例:商业智能/分析/报表,分析和查询 VPC 流日志、ELB 日志、CloudTrail 跟踪等…
  • 考试提示:使用无服务器 SQL 分析 S3 中的数据,使用 Athena

Screenshot 2023-08-17 at 06.28.10.png

Amazon Athena – 性能优化

  • 使用列式数据以节省成本(减少扫描量)
  • 推荐使用Apache Parquet或ORC
  • 获得巨大的性能改进
  • 使用Glue将数据转换为Parquet或ORC格式
  • 压缩数据以便进行更小的检索(bzip2、gzip、lz4、snappy、zlip、zstd…)
  • 在S3中对数据集进行分区,以便在虚拟列上进行轻松查询
  • 示例:s3://athena-examples/flight/parquet/year=1991/month=1/day=1/
  • 使用较大的文件(> 128 MB)以最小化开销

Amazon Athena – Federated Query (联合查询)

  • 允许您在关系型、非关系型、对象和自定义数据源(AWS或本地)中运行SQL查询
  • 使用在 AWS Lambda 上运行的数据源连接器来运行联合查询(例如CloudWatch Logs、DynamoDB、RDS…)
  • 将结果存储回Amazon S3

Screenshot 2023-08-17 at 06.27.02.png

2.2 Redshift 概述

  • Redshift 基于 PostgreSQL,但不用于 OLTP
  • 它是 OLAP-在线分析处理(分析和数据仓库)
  • 性能比其他数据仓库提高10倍,可以扩展到PB级的数据
  • 数据以列式存储(而不是基于行)和并行查询引擎
  • 根据所预配的实例按量付费
  • 具有用于执行查询的 SQL 接口
  • BI 工具如 Amazon Quicksight 或 Tableau 与之集成
  • 与 Athena 相比:由于索引,查询/连接/聚合更快

Redshift 集群

  • Leader 节点:用于查询规划和结果聚合
  • 计算节点:用于执行查询,将结果发送给 Leader
  • 需要提前预配节点大小
  • 可以使用预留实例以节省成本
    在这里插入图片描述

Redshift – 快照&灾难恢复

  • Redshift 对某些集群具有“多-AZ”模式
  • 快照是集群的时间点备份,存储在 S3 内部
  • 快照是增量的(只保存改变的部分)
  • 可以将快照还原到新的集群中
  • 自动:每8小时、每5GB或按计划。设置保留期为1到35天
  • 手动:快照保留直到删除
  • 可以配置 Amazon Redshift 自动复制集群的快照(自动或手动)到另一个 AWS 区域

Screenshot 2023-08-17 at 06.25.54.png

Loading data into Redshift: Large inserts are MUCH better

Screenshot 2023-08-17 at 06.21.36.png
**copy customer
from ‘s3://mybucket/mydata’
iam_role ‘arn:aws:iam::0123456789012:role/MyRedshiftRole’; **

Redshift Spectrum

  • 在不加载数据的情况下查询已经存在于S3中的数据
  • 必须有可用的 Redshift 集群来启动查询
  • 然后将查询提交给数千个 Redshift Spectrum 节点

Screenshot 2023-08-17 at 06.21.02.png

2.3 Amazon OpenSearch Service

  • Amazon OpenSearch 是 Amazon ElasticSearch 的后继者
  • 在 DynamoDB 中,只能通过主键或索引进行查询…
  • 使用 OpenSearch,您可以搜索任何字段,甚至是部分匹配
  • 常常将 OpenSearch 用作其他数据库的补充
  • OpenSearch 需要一组实例(而不是无服务器)
  • 不支持 SQL(它有自己的查询语言)
  • 从 Kinesis Data Firehose、AWS IoT 和 CloudWatch Logs 进行摄取
  • 通过 Cognito 和 IAM、KMS 加密、TLS 实现安全性
  • 配备 OpenSearch Dashboards(可视化)

OpenSearch patterns - DynamoDB

Screenshot 2023-08-17 at 06.17.14.png

OpenSearch patterns - CloudWatch Logs

Screenshot 2023-08-17 at 06.17.58.png

OpenSearch patterns - Kinesis Data Streams & Kinesis Data Firehose

Screenshot 2023-08-17 at 06.20.17.png

2.4 Amazon EMR

  • EMR 代表 “Elastic MapReduce”
  • EMR 用于创建 Hadoop 集群(大数据),以分析和处理大量数据
  • 集群可以由数百个 EC2 实例组成
  • EMR 与 Apache Spark、HBase、Presto、Flink 等捆绑在一起
  • EMR 负责所有供应和配置
  • 支持自动扩展,并与 Spot 实例集成
  • 用例:数据处理,机器学习,Web 索引,大数据…

Amazon EMR - 节点类型和购买方式

  • 主节点:管理集群,协调,管理健康-长期运行
  • 核心节点:运行任务和存储数据-长期运行
  • 任务节点(可选):只是运行任务-通常是Spot实例
  • 购买选项:
  • 按需:可靠,可预测,不会被终止
  • 预留实例(最低1年):成本节约(如果可用,EMR将自动使用)
  • Spot实例:更便宜,可以终止,可靠性较低
  • 可以有长期运行的集群或短暂(临时)集群

2.5 Amazon QuickSight

  • 无服务器的机器学习驱动的业务智能服务,用于创建交互式仪表板
  • 快速、自动可扩展、可嵌入、按会话定价
  • 用例:
    • 商业分析
    • 构建可视化
    • 执行即席分析
    • 利用数据获得业务洞察
  • 与RDS、Aurora、Athena、Redshift、S3等集成
  • 如果数据导入到QuickSight中,使用SPICE引擎进行内存计算
  • 企业版:可以设置列级安全性(CLS)

Screenshot 2023-08-16 at 23.04.32.png

QuickSight 集成

Screenshot 2023-08-16 at 23.03.56.png

QuickSight - 仪表板和分析

  • 定义用户(标准版本)和组(企业版)
  • 这些用户和组仅存在于QuickSight中,而不在IAM中!
  • 仪表板…
  • 是一个只读的分析快照,可以共享
  • 保留分析的配置(过滤、参数、控件、排序)
  • 您可以与用户或组分享分析或仪表板
  • 要共享仪表板,必须首先发布它
  • 看到仪表板的用户也可以看到底层数据

2.6 AWS Glue

  • 托管的抽取、转换和加载(ETL)服务
  • 用于准备和转换数据以供分析使用
  • 完全无服务器的服务

Screenshot 2023-08-16 at 23.03.29.png

AWS Glue - 将数据转换为 Parquet 格式

Screenshot 2023-08-16 at 23.03.13.png

Glue 数据目录:数据集的目录

Screenshot 2023-08-16 at 23.02.57.png

Glue - 高层次概述

  • Glue 作业书签:防止重新处理旧数据
  • Glue 弹性视图:
    • 使用 SQL 在多个数据存储中组合和复制数据
    • 无需自定义代码,Glue 监视源数据的更改,无服务器
    • 利用“虚拟表”(物化视图)
  • Glue DataBrew:使用预构建的转换清理和规范化数据
  • Glue Studio:用于在 Glue 中创建、运行和监视 ETL 作业的新 GUI
  • Glue 流式 ETL(基于 Apache Spark 结构化流):
    • 兼容 Kinesis Data Streaming、Kafka、MSK(托管 Kafka)

2.7 AWS Lake Formation

  • 数据湖 = 用于分析目的的数据的中心位置
  • 完全托管的服务,可在几天内轻松设置数据湖
  • 发现、清洗、转换和摄取数据到数据湖中
  • 自动化许多复杂的手动步骤(收集、清洗、移动、编目数据等),并进行去重(使用 ML 转换)
  • 在数据湖中结合结构化和非结构化数据
  • 开箱即用的源蓝图:S3、RDS、关系型和 NoSQL 数据库等
  • 细粒度的应用程序访问控制(行级和列级)
  • 建立在 AWS 全局之上

Screenshot 2023-08-16 at 23.01.24.png

Centralized Permissions Example

Screenshot 2023-08-16 at 23.00.46.png

2.8 Kinesis Data Analytics 用于 SQL 应用程序

Screenshot 2023-08-16 at 23.00.22.png

Kinesis Data Analytics(SQL 应用程序)

  • 使用 SQL 在 Kinesis Data Streams 和 Firehose 上进行实时分析
  • 添加 Amazon S3 的参考数据以丰富流式数据
  • 完全托管,无需预配服务器
  • 自动扩展
  • 按实际消耗率付费
  • 输出:
    • Kinesis Data Streams:根据实时分析查询创建流
    • Kinesis Data Firehose:将分析查询结果发送到目标位置
  • 用例:
    • 时间序列分析
    • 实时仪表板
    • 实时指标

Kinesis Data Analytics 用于 Apache Flink

  • 使用 Flink(Java、Scala 或 SQL)处理和分析流式数据

Screenshot 2023-08-16 at 22.59.21.png

  • 在 AWS 上的托管集群上运行任何 Apache Flink 应用程序
  • 提供计算资源,支持并行计算,自动扩展
  • 应用程序备份(实现为检查点和快照)
  • 使用任何 Apache Flink 编程功能
  • Flink 不从 Firehose 读取数据(请改用 Kinesis Analytics for SQL)

2.9 Amazon Managed Streaming for Apache Kafka(Amazon MSK)

  • Amazon Managed Streaming for Apache Kafka(Amazon MSK)是 Amazon Kinesis 的替代品。
  • 它是在AWS上完全托管的Apache Kafka服务。
  • 允许您创建、更新和删除集群。
  • MSK 为您创建和管理 Kafka broker 节点和 Zookeeper 节点。
  • 在您的 VPC 中部署 MSK 集群,支持多可用区(高可用性最多3个)。
  • 自动从常见的 Apache Kafka 故障中恢复。
  • 数据存储在 EBS 卷上,持续时间由您决定。
  • MSK 支持无服务器模式,无需管理容量。
  • MSK 自动预配资源并扩展计算和存储。

Apache Kafka 概述

Screenshot 2023-08-16 at 22.58.44.png

Kinesis Data Streams v.s. Amazon MSK

Kinesis Data Streams

  • 1 MB的消息大小限制。
  • 使用 Shards 进行数据流管理。
  • 支持 Shard 的分裂和合并。
  • 传输过程中使用 TLS 进行加密。
  • 数据静态加密使用 KMS。

Amazon MSK

  • 默认为1MB,可配置为更高(例如:10MB)。
  • Kafka 主题使用分区进行管理。
  • 只能向主题添加分区。
  • 传输过程中支持明文或 TLS 加密。
  • 数据静态加密使用 KMS。

Amazon MSK 消费者

Screenshot 2023-08-16 at 22.55.36.png

大数据摄取流程

  • 我们希望摄取流程是完全无服务器的。
  • 我们希望实时收集数据。
  • 我们希望对数据进行转换。
  • 我们希望使用 SQL 查询转换后的数据。
  • 使用查询创建的报表应该存储在 S3 中。
  • 我们希望将数据加载到数据仓库中并创建仪表板。

Screenshot 2023-08-16 at 22.54.18.png

大数据摄取流程讨论

  • IoT Core 允许您从物联网设备中获取数据。
  • Kinesis 非常适合实时数据收集。
  • Firehose 可以帮助将数据以近实时(1分钟)的方式交付给 S3。
  • Lambda 可以帮助 Firehose 进行数据转换。
  • Amazon S3 可以触发 SQS 的通知。
  • Lambda 可以订阅 SQS(我们可以将 S3 连接到 Lambda)。
  • Athena 是一种无服务器的 SQL 服务,查询结果存储在 S3 中。
  • 报表存储桶包含经过分析的数据,可以被报表工具(如 AWS QuickSight、Redshift 等)使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/648105.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

8.12用最少数量的箭引爆气球(LC452-M)

452. 用最少数量的箭引爆气球 - 力扣(LeetCode) 算法: 局部最优:当气球出现重叠,一起射,所用弓箭最少。 全局最优:把所有气球射爆所用弓箭最少。 为了让气球尽可能的重叠,需要对…

5JS语句

表达式在JavaScript中是短语,那么语句(statement)就是JavaScript整句或命令。 表达式计算出一个值,但语句用来执行以使某件事发生。诸如赋值和函数调用这些有副作用的表达式,是可以作为单独的语句的,这种把…

光控自动照明灯电路原理图

原理图: 电路原理: R1和R2构成分压电路,当环境光线较强时,光敏电阻阻值较小,R2上的电压较小,无法使三极管Q1导通,此时三极管的集电极没有电流通过,发光二极管DS不亮。当光线较暗时&…

Spring Boot3整合MyBatis Plus

目录 1.前置条件 2.导坐标 3.配置数据源 4.mybatis-plus基础配置 5.配置mapper扫描路径 6.MyBatis Plus代码生成器整合 1.导坐标 2.编写代码生成逻辑 7.整合Druid连接池 1.前置条件 已经初始化好一个spring boot项目且版本为3X,项目可正常启动 初始化教程…

昂首资本闪耀石家庄交易技术峰会,尽释行业进取之姿

“2024年石家庄交易技术峰会”在中国河北石家庄举办,Anzo Capital昂首资本作为2024年交易峰会的独家赞助商出席本次活动,Anzo Capital 魄力超前,尽显行业进取之姿。 “开门红”——作为2024年的首场交易技术峰会,“石家庄交易技术…

幻兽帕鲁专用服务器设置,与好友畅玩

创建幻兽帕鲁服务器1分钟部署教程,阿里云和腾讯云均推出幻兽帕鲁服务器专属优惠服务器和部署教程,4核16G和4核32G配置可选,阿腾云atengyun.com分享1分钟自建幻兽帕鲁Palworld服务器教程,附阿里云和腾讯云专属幻兽帕鲁优惠价格表&a…

DAY10_SpringBoot—SpringMVC重定向和转发RestFul风格JSON格式SSM框架整合Ajax-JQuery

目录 1 SpringMVC1.1 重定向和转发1.1.1 转发1.1.2 重定向1.1.3 转发练习1.1.4 重定向练习1.1.5 重定向/转发特点1.1.6 重定向/转发意义 1.2 RestFul风格1.2.1 RestFul入门案例1.2.2 简化业务调用 1.3 JSON1.3.1 JSON介绍1.3.2 JSON格式1.3.2.1 Object格式1.3.2.2 Array格式1.3…

cocos creator 碰撞系统

设置碰撞组件 * 添加组件中添加碰撞组件 3种组件类型,矩形碰撞,圆形碰撞, 多边形碰撞 开启碰撞检测 start() {//开启碰撞管理器let cm cc.director.getCollisionManager()cm.enabled true//绘制碰撞检测边界线。用于调试cm.enabledDebug…

01 Redis的特性+下载安装启动

1.1 NoSQL NoSQL(“non-relational”, “Not Only SQL”),泛指非关系型的数据库。 键值存储数据库 : 就像 Map 一样的 key-value 对。如Redis文档数据库 : NoSQL 与关系型数据的结合,最像关系…

GUN/Linux时间同步服务之chrony配置管理

风险告知 本人及本篇博文不为任何人及任何行为的任何风险承担责任,图解仅供参考,请悉知!相关配置操作是在一个全新的演示环境下进行的,演示环境中没有任何有价值的数据,但这并不代表摆在你面前的环境也是如此。生产环境…

ICMP协议详解

ICMP(Internet Control Message Protocol)协议是一个网络层协议。 一个新搭建好的网络,往往需要先进行一个简单的测试,来验证网络是否畅通;但是IP协议并不提供可靠传输。如果丢包了,IP协议并不能通知传输层…

Java中Integer(127)==Integer(127)为True,Integer(128)==Integer(128)却为False,这是为什么?

文章目录 1.前言2. 源码解析3.总结 1.前言 相信大家职业生涯中或多或少的碰到过Java比较变态的笔试题,下面这道题目大家应该不陌生: Integer i 127; Integer j 127;Integer m 128; Integer n 128;System.out.println(i j); // 输出为 true System.o…

Unknown encoder ‘libmp3lame

环境: macos m1 , python3.10.x 背景 做视频切片, 使用moviepy 中VideoFileClip进行截取视频。 报错: Unknown encoder libmp3lameThe audio export failed because FFMPEG didnt find the specified codec for audio encoding …

【ARMv8M Cortex-M33 系列 7 -- RA4M2 移植 RT-Thread 问题总结】

请阅读【嵌入式开发学习必备专栏 】 文章目录 问题小结栈未对齐 经过几天的调试,成功将rt-thead 移植到 RA4M2(Cortex-M33 核)上,thread 和 shell 命令已经都成功支持。 问题小结 在完成 rt-thread 代码 Makefile 编译系统搭建…

Django开发_19_form表单前后端关联(1)

实例分析,过程使用URL反向解析知识: Django开发_12_URL反向解析、重定向-CSDN博客y 一、实例代码 (一)主路由urls.py: path("work4/", include("work4_app.urls",namespace"work4")), (二)app内urls.py: from djang…

利用大数据靶向肿瘤细胞的基因突变

在亚利桑那健康科学大学,研究人员正在应用大量数据,试图更多地了解这种突变、其变异以及任何可能有助于他们治疗患者的相关因素。 癌症的潜在原因很多,从食物和环境到创伤和感染。在遗传学方面,研究人员发现,有一种基因…

uniapp app更新

uniapp app更新 这个版本要随之增加,不然刚更新时直接用app, 新包增加的那些页面跳转会有问题,不能跳新的页面 //app更新检测 updataApp(){const that this;uni.showLoading({title:加载中...})plus.runtime.getProperty(plus.runtime.appid, functio…

解密:消息中间件的选择与使用:打造高效通信枢纽

目录 第一章:消息中间件介绍 1.1 什么是消息中间件 1.2 消息中间件的作用 1.3 消息中间件的分类 第二章:消息中间件的选择标准 2.1 性能 2.2 可靠性 2.3 可扩展性 2.4 易用性 2.5 社区支持 2.6 成本 第三章:常见的消息中间件对比…

解决 [Vue warn]:Avoid mutating a prop directly 警告

错误信息 [Vue warn]: Avoid mutating a prop directly since the value will be overwritten whenever the parent component re-renders. Instead, use a data or computed property based on the prop’s value. Prop being mutated: “xxx” 错误原因 所有的 prop 都使得…

蓝桥杯备战——3.定时器前后台

1.STC15F2k61S2的定时器 阅读STC15系列的手册,我们可以看到跟STC89C52RC的定时器还是有不同之处的: 由上图可以看到我们可以通过AUXR寄存器直接设置定时器的1T/12T模式了 在定时器0/1模式上也可以设置为16位自动重装载。 另外需要注意IAP15F2K61S2只有…