《动手学深度学习(PyTorch版)》笔记3.1

Chapter3 Linear Neural Networks

3.1 Linear Regression

3.1.1 Basic Concepts

我们通常使用 n n n来表示数据集中的样本数。对索引为 i i i的样本,其输入表示为 x ( i ) = [ x 1 ( i ) , x 2 ( i ) , . . . , x n ( i ) ] ⊤ \mathbf{x}^{(i)} = [x_1^{(i)}, x_2^{(i)},...,x_n^{(i)}]^\top x(i)=[x1(i),x2(i),...,xn(i)],其对应的标签是 y ( i ) y^{(i)} y(i)

3.1.1.1 Linear Model

在机器学习领域,我们通常使用的是高维数据集,建模时采用线性代数表示法会比较方便。当我们的输入包含 d d d个特征时,我们将预测结果 y ^ \hat{y} y^(通常使用“尖角”符号表示 y y y的估计值)表示为:

y ^ = w 1 x 1 + . . . + w d x d + b . \hat{y} = w_1 x_1 + ... + w_d x_d + b. y^=w1x1+...+wdxd+b.

将所有特征放到向量 x ∈ R d \mathbf{x} \in \mathbb{R}^d xRd中,并将所有权重放到向量 w ∈ R d \mathbf{w} \in \mathbb{R}^d wRd中,我们可以用点积形式来简洁地表达模型:

y ^ = w ⊤ x + b (1) \hat{y} = \mathbf{w}^\top \mathbf{x} + b \tag{1} y^=wx+b(1)

在式(1)中,向量 x \mathbf{x} x对应于单个数据样本的特征。用符号表示的矩阵 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} XRn×d可以很方便地引用我们整个数据集的 n n n个样本。其中, X \mathbf{X} X的每一行是一个样本,每一列是一种特征。对于特征集合 X \mathbf{X} X,预测值 y ^ ∈ R n \hat{\mathbf{y}} \in \mathbb{R}^n y^Rn可以通过矩阵-向量乘法表示为:

y ^ = X w + b {\hat{\mathbf{y}}} = \mathbf{X} \mathbf{w} + b y^=Xw+b

给定训练数据特征 X \mathbf{X} X和对应的已知标签 y \mathbf{y} y,线性回归的目标是找到一组权重向量 w \mathbf{w} w和偏置 b b b:当给定从 X \mathbf{X} X的同分布中取样的新样本特征时,这组权重向量和偏置能够使得新样本预测标签的误差尽可能小。

虽然我们相信给定 x \mathbf{x} x预测 y y y的最佳模型会是线性的,但我们很难找到一个有 n n n个样本的真实数据集,其中对于所有的 1 ≤ i ≤ n 1 \leq i \leq n 1in y ( i ) y^{(i)} y(i)完全等于 w ⊤ x ( i ) + b \mathbf{w}^\top \mathbf{x}^{(i)}+b wx(i)+b。无论我们使用什么手段来观察特征 X \mathbf{X} X和标签 y \mathbf{y} y,都可能会出现少量的观测误差。因此,即使确信特征与标签的潜在关系是线性的,我们也会加入一个噪声项来考虑观测误差带来的影响。

在开始寻找最好的模型参数(model parameters w \mathbf{w} w b b b之前,
我们还需要两个东西:

  • 一种模型质量的度量方式;
  • 一种能够更新模型以提高模型预测质量的方法。
3.1.1.2 Loss Function

在我们开始考虑如何用模型拟合(fit)数据之前,我们需要确定一个拟合程度的度量。
损失函数(loss function)能够量化目标的实际值与预测值之间的差距。通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。回归问题中最常用的损失函数是平方误差函数。当样本 i i i的预测值为 y ^ ( i ) \hat{y}^{(i)} y^(i),其相应的真实标签为 y ( i ) y^{(i)} y(i)时,
平方误差可以定义为以下公式:

l ( i ) ( w , b ) = 1 2 ( y ^ ( i ) − y ( i ) ) 2 . l^{(i)}(\mathbf{w}, b) = \frac{1}{2} \left(\hat{y}^{(i)} - y^{(i)}\right)^2. l(i)(w,b)=21(y^(i)y(i))2.

常数 1 2 \frac{1}{2} 21不会带来本质的差别,但这样在形式上稍微简单一些(因为当我们对损失函数求导后常数系数为1)。由于训练数据集并不受我们控制,所以经验误差只是关于模型参数的函数。由于平方误差函数中的二次方项,估计值 y ^ ( i ) \hat{y}^{(i)} y^(i)和观测值 y ( i ) y^{(i)} y(i)之间较大的差异将导致更大的损失。为了度量模型在整个数据集上的质量,我们需计算在训练集 n n n个样本上的损失均值(也等价于求和)。

L ( w , b ) = 1 n ∑ i = 1 n l ( i ) ( w , b ) = 1 n ∑ i = 1 n 1 2 ( w ⊤ x ( i ) + b − y ( i ) ) 2 . L(\mathbf{w}, b) =\frac{1}{n}\sum_{i=1}^n l^{(i)}(\mathbf{w}, b) =\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right)^2. L(w,b)=n1i=1nl(i)(w,b)=n1i=1n21(wx(i)+by(i))2.

在训练模型时,我们希望寻找一组参数( w ∗ , b ∗ \mathbf{w}^*, b^* w,b),这组参数能最小化在所有训练样本上的总损失。如下式:

w ∗ , b ∗ = argmin ⁡ w , b L ( w , b ) . \mathbf{w}^*, b^* = \operatorname*{argmin}_{\mathbf{w}, b}\ L(\mathbf{w}, b). w,b=w,bargmin L(w,b).

3.1.1.3 Analytical Solution

线性回归有解析解(analytical solution)。首先,我们将偏置 b b b合并到参数 w \mathbf{w} w中,合并方法是在包含所有参数的矩阵中附加一列。我们的预测问题是最小化 ∥ y − X w ∥ 2 \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 yXw2。这在损失平面上只有一个临界点,这个临界点对应于整个区域的损失极小点。将损失关于 w \mathbf{w} w的导数设为0,即
X ⊤ X w = X ⊤ y \mathbf X^\top \mathbf{X}\mathbf{w}=\mathbf X^\top \mathbf{y} XXw=Xy
得到解析解:

w ∗ = ( X ⊤ X ) − 1 X ⊤ y \mathbf{w}^* = (\mathbf X^\top \mathbf X)^{-1}\mathbf X^\top \mathbf{y} w=(XX)1Xy

像线性回归这样的简单问题存在解析解,但并不是所有的问题都存在解析解。

3.1.1.4 Stochastic Gradient Descent

我们用到一种名为梯度下降(gradient descent)的方法,几乎可以优化所有深度学习模型。它通过不断地在损失函数递减的方向上更新参数来降低误差。

梯度下降最简单的用法是计算损失函数(数据集中所有样本的损失均值)关于模型参数的导数(在这里也可以称为梯度)。但实际中的执行可能会非常慢:因为在每一次更新参数之前,我们必须遍历整个数据集。因此,我们通常会在每次需要计算更新的时候随机抽取一小批样本,这种变体叫做小批量随机梯度下降(minibatch stochastic gradient descent)。

在每次迭代中,我们首先随机抽样一个小批量 B \mathcal{B} B,它是由固定数量的训练样本组成的。然后,我们计算小批量的平均损失关于模型参数的导数(也可以称为梯度)。最后,我们将梯度乘以一个预先确定的正数 η \eta η,并从当前参数的值中减掉。

我们用下面的数学公式来表示这一更新过程,其中 w \mathbf{w} w x \mathbf{x} x都是向量, ∣ B ∣ |\mathcal{B}| B表示每个小批量中的样本数,称为批量大小(batch size)。
η \eta η表示学习率(learning rate)。

( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) . (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b). (w,b)(w,b)BηiB(w,b)l(i)(w,b).

总而言之,算法的步骤如下:
(1)初始化模型参数的值,如随机初始化;
(2)从数据集中随机抽取小批量样本且在负梯度的方向上更新参数,并不断迭代这一步骤。
对于平方损失和仿射变换,可以写成如下形式:

w ← w − η ∣ B ∣ ∑ i ∈ B ∂ w l ( i ) ( w , b ) = w − η ∣ B ∣ ∑ i ∈ B x ( i ) ( w ⊤ x ( i ) + b − y ( i ) ) (关于 w 的偏导) b ← b − η ∣ B ∣ ∑ i ∈ B ∂ b l ( i ) ( w , b ) = b − η ∣ B ∣ ∑ i ∈ B ( w ⊤ x ( i ) + b − y ( i ) ) (关于 b 的偏导) \begin{aligned} \mathbf{w} &\leftarrow \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{\mathbf{w}} l^{(i)}(\mathbf{w}, b) = \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathbf{x}^{(i)} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right) \text{ (关于$\mathbf{w}$的偏导)}\\ b &\leftarrow b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_b l^{(i)}(\mathbf{w}, b) = b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right) \text{ (关于$b$的偏导)} \end{aligned} wbwBηiBwl(i)(w,b)=wBηiBx(i)(wx(i)+by(i)) (关于w的偏导)bBηiBbl(i)(w,b)=bBηiB(wx(i)+by(i)) (关于b的偏导)

批量大小和学习率的值通常是手动预先指定,而不是通过模型训练得到的。这些可以调整但不在训练过程中更新的参数称为超参数(hyperparameter)。调参(hyperparameter tuning)是选择超参数的过程。超参数通常是我们根据训练迭代结果来调整的,而训练迭代结果是在独立的验证数据集(validation dataset)上评估得到的。

在训练了预先确定的若干迭代次数后(或者直到满足某些其他停止条件后),我们记录下模型参数的估计值,表示为 w ^ , b ^ \hat{\mathbf{w}}, \hat{b} w^,b^。但是,即使我们的函数确实是线性的且无噪声,这些估计值也不会使损失函数真正地达到最小值。因为算法会使得损失向最小值缓慢收敛,但却不能在有限的步数内非常精确地达到最小值。
线性回归恰好是一个在整个域中只有一个最小值的学习问题,但是对像深度神经网络这样复杂的模型来说,损失平面上通常包含多个最小值。深度学习实践者很少会去花费大力气寻找这样一组参数,使得在训练集上的损失达到最小。事实上,更难做到的是找到一组参数,这组参数能够在我们从未见过的数据上实现较低的损失,这一挑战被称为泛化(generalization)。

3.1.1.5 Using Models for Prediction

给定特征估计目标的过程通常称为预测(prediction)或推断(inference)。但在统计学中,推断更多地表示基于数据集估计参数。

3.1.2 Vectorization Acceleration

在训练我们的模型时,我们经常希望能够同时处理整个小批量的样本。为了实现这一点,需要我们对计算进行矢量化,从而利用线性代数库,而不是在Python中编写开销高昂的for循环,即使用:

n = 10000
a = torch.ones([n])
b = torch.ones([n])
c=a+b

而不是:

c = torch.zeros(n)
for i in range(n):c[i] = a[i] + b[i]

3.1.3 Normal Distribution and Squared Loss

噪声正态分布如下式:

y = w ⊤ x + b + ϵ , y = \mathbf{w}^\top \mathbf{x} + b + \epsilon, y=wx+b+ϵ,

其中, ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim \mathcal{N}(0, \sigma^2) ϵN(0,σ2)

因此,我们现在可以写出通过给定的 x \mathbf{x} x观测到特定 y y y似然(likelihood):

P ( y ∣ x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( y − w ⊤ x − b ) 2 ) . P(y \mid \mathbf{x}) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (y - \mathbf{w}^\top \mathbf{x} - b)^2\right). P(yx)=2πσ2 1exp(2σ21(ywxb)2).

现在,根据极大似然估计法,参数 w \mathbf{w} w b b b的最优值是使整个数据集的似然最大的值:

P ( y ∣ X ) = ∏ i = 1 n p ( y ( i ) ∣ x ( i ) ) . P(\mathbf y \mid \mathbf X) = \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)}). P(yX)=i=1np(y(i)x(i)).

根据极大似然估计法选择的估计量称为极大似然估计量。虽然使许多指数函数的乘积最大化看起来很困难,但是我们可以在不改变目标的前提下,通过最大化似然对数来简化。由于历史原因,优化通常是说最小化而不是最大化。我们可以改为最小化负对数似然 − log ⁡ P ( y ∣ X ) -\log P(\mathbf y \mid \mathbf X) logP(yX)。由此可以得到的数学公式是:

− log ⁡ P ( y ∣ X ) = ∑ i = 1 n 1 2 log ⁡ ( 2 π σ 2 ) + 1 2 σ 2 ( y ( i ) − w ⊤ x ( i ) − b ) 2 . -\log P(\mathbf y \mid \mathbf X) = \sum_{i=1}^n \frac{1}{2} \log(2 \pi \sigma^2) + \frac{1}{2 \sigma^2} \left(y^{(i)} - \mathbf{w}^\top \mathbf{x}^{(i)} - b\right)^2. logP(yX)=i=1n21log(2πσ2)+2σ21(y(i)wx(i)b)2.

现在我们只需要假设 σ \sigma σ是某个固定常数就可以忽略第一项,现在第二项除了常数 1 σ 2 \frac{1}{\sigma^2} σ21外,其余部分和前面介绍的均方误差是一样的。因此,在高斯噪声的假设下,最小化均方误差等价于对线性模型的极大似然估计。

3.1.4 From Linear Regression to Deep Networks

我们可以用描述神经网络的方式来描述线性模型,从而把线性模型看作一个神经网络。
在这里插入图片描述

首先,我们用“层”符号来重写这个模型。深度学习从业者喜欢绘制图表来可视化模型中正在发生的事情。我们将线性回归模型描述为一个神经网络。需要注意的是,该图只显示连接模式,即只显示每个输入如何连接到输出,隐去了权重和偏置的值。
在图中所示的神经网络中,输入为 x 1 , … , x d x_1, \ldots, x_d x1,,xd,因此输入层中的输入数(或称为特征维度,feature dimensionality)为 d d d。网络的输出为 o 1 o_1 o1,因此输出层中的输出数是1。需要注意的是,输入值都是已经给定的,并且只有一个计算神经元。由于模型重点在发生计算的地方,所以通常我们在计算层数时不考虑输入层。也就是说,图中神经网络的层数为1。我们可以将线性回归模型视为仅由单个人工神经元组成的神经网络,或称为单层神经网络。对于线性回归,每个输入都与每个输出(在本例中只有一个输出)相连,我们将这种变换( 图中的输出层)称为全连接层(fully-connected layer)或称为稠密层(dense layer)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645984.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习】强化学习(七)-策略梯度算法-REINFORCE 训练月球着陆器代理(智能体)...

概 述 月球着陆器代理是一个模拟飞行器在月球表面着陆的环境,它有八个连续的状态变量,分别是水平坐标、垂直坐标、水平速度、垂直速度、角度、角速度、腿1触地、腿2触地。它有四个离散的动作,分别是什么都不做、发动左方向引擎、发动主引擎、…

gin如何实现热更新

什么是热更新? 一种不需要用户关闭应用或重新启动设备就能进行的软件更新技术。它可以快速地在线修复或升级应用程序的错误或功能,从而减少用户的等待时间并提高用户体验。 如何优雅停止服务? Go 1.8版本之后, http.Server 内置…

ZigBee学习——浅析协议栈

✨记录学习过程 文章目录 一、初识OSAL1.1 Z-Stack和Zigbee的OSAL是什么关系?1.2 OSAL可以解决Z-stack在不同厂商的芯片上的使用吗? 二、协议栈运行机制2.1 初始化涉及内容2.2 初始化过程 一、初识OSAL OSAL,全称是操作系统抽象层&#xff0…

【送书活动八期】docker容器中登陆并操作postgresql

这里的背景比较简单,因为区块链浏览器使用的是blockscout,blockscout的数据库选择的是postgresql,这些服务组件都是使用的docker容器来管理,今天进行区块链上交易查询的时候,发现数据存在部分问题,因此需要…

《WebKit 技术内幕》学习之十(4): 插件与JavaScript扩展

4 Chromium扩展机制 4.1 原理 Chromium的扩展(Extension)机制 (1) 原先是Chromium推出的一项技术,该机制能够扩展浏览器的能力,例如笔者使用的一个扩展实例名为“switchy proxy”,它可以帮助用户方便的切换Chromium…

Kotlin for loop: in、 until、 step、 downTo

Kotlin for loop: in、 until、 step、 downTo fun loop1() {for (i in 0..5) {print("$i ")}println("\n1-end\n") }fun loop2() {for (i in 0 until 5) {print("$i ")}println("\n2-end\n") }fun loop3() {for (i in 0 until (5)) {…

提高塑料制品的塑料透光率测量仪

塑料透光率检测仪是一种用于测量塑料材料透光率的仪器。透光率是指光线通过材料后,被吸收、反射和散射的量与总光线量的比例。塑料透光率检测仪在塑料制品的研发、生产和质量控制等方面具有广泛的应用。 塑料透光率检测仪的原理是使用光束通过待测塑料样品&#xff…

【神奇代码岛】VOXA新岛畅玩指南

前言 最近神奇代码岛不是迎来了重大更新嘛,有可能有很多人还不知道新版的神岛有什么重大更新,我现在来一一说明 重大更新 这一次我们将以代码、地图编辑器、建模编辑器来说明 代码 主要是增加了许多API,比如UI、玩家皮肤等许多新的API …

【推荐100个unity插件之16】3D物品描边效果——Quick Outline免费插件

文章目录 前言地址介绍使用例子完结 前言 关于3D描边,其实之前有用shader弄过一个:【实现100个unity特效】shader实现3D物品闪光和描边效果 但是很遗憾的是他不支持URP项目,所以现在推荐这款插件,他能很好的支持URP,…

Pycharm终端显示PS而不显示虚拟环境venv

PS表示当前使用的是powershell.exe,如果你要显示虚拟环境名,则要改为cmd.exe 解决办法: 打开File-settings-Tools-Terminal-shell path 在文件中找到设置,在工具中找到终端 把第四个Shell路径设置为cmd.exe 3. 点击确定&#xf…

springCloud的ribbon和feign

ribbon方式调用 就是将原来的具体地址,改为了通过服务名去调用。注册中心中有多个服务,相同服务名,就会算作可以调用的服务。 首先得有一个注册中心,然后各种服务注册进去,然后利用ribbon或者feign去调用。 ribbon是直…

map地图

地图想必大家都很熟悉,地图的应用非常广泛,我们出远门通常都会用到,下面我来给大家讲解一下地图! 首先我们要知道该怎样下载地图? 1.地图的版本有很多,我们选择一款,前往地图开发者中心。 2.…

《机器学习》客户流失判断-python实现

客户流失判断 题目赛题描述数据说明赛题来源-DataCastle 问题描述解题思路Python实现读取数据并初步了解导入宏包读取数据查看数据类型检查缺失值描述性统计分析 可视化分析用户流失分析特征分析任期年数与客户流失的关系:服务类属性分析特征相关性分析 数据预处理类…

༺༽༾ཊ—Unity之-01-单例模式—ཏ༿༼༻

在游戏开发过程中,我们会创建各种各样的类,再用new生成实例,有些时候我们需要这个类在整个游戏中是唯一出现的,比如一些管理器比如声音管理器等,没必要创建很多实例,就算有很多模块需要各种声音功能&#x…

信号量机制解决经典同步互斥问题

生产者 / 消费者问题、读者 / 写者问题和哲学家问题是操作系统的三大经典同步互斥问题。本文将介绍这三个问题的基本特点以及如何用信号量机制进行解决。 在分析这三个问题之前,我们首先需要了解用信号量机制解决同步互斥问题的一般规律: 实现同步与互斥…

制造领域 物料清单(BOM)与零件明细表的区别

有许多人分不清物料清单(BOM)与零件明细表的区别,其实它们在企业的生产管理软件中起着不同的作用,各有各的特色,但是却有不尽相同。接下来我们就来区分一下吧 物料清单(BOM),是详细记录一个项目所用到的所有下阶材料及相关属性,亦即母件与所有子件的从属…

求职应聘找工作,你一定会遇到的人才测评

信息时代,越来越多的公司在招聘时引入了人才测评机制。企业和单位希望通过人才测评在广大的应聘者中,找到符合自己要求的人才。虽然很多应聘者能力和简历都比较出众,但却在最开始的人才测评中吃了亏。有的公司很看重人才测评结果。测评就相当…

76.Go分布式ID总览

文章目录 简介一:UUID二、雪花算法三:Leaf-snowflake四:数据库自增ID五:使用Redis实现分布式ID生成六:使用数据库分段(Leaf-segment)七 :增强版Leaf-segment八:Tinyid九&…

Vue实现图片预览,侧边栏懒加载,不用任何插件,简单好用

实现样式 需求 实现PDF上传预览,并且不能下载 第一次实现:用vue-pdf,将上传的文件用base64传给前端展示 问题: 水印第一次加载有后面又没有了。当上传大的pdf文件后,前端获取和渲染又长又慢,甚至不能用 修…

Docker K8s-存储相关概念

Docker中的存储有两个概念:存储驱动程序Storage Driver和卷驱动程序Volumes Drivers。 存储驱动 Storage Driver 首先我们来看一下安装docker以后,docker的文件夹下面有哪些内容: cd /var/lib/docker && ll这里存储了所有的数据&a…