ZigBee学习——浅析协议栈

✨记录学习过程

文章目录

  • 一、初识OSAL
    • 1.1 Z-Stack和Zigbee的OSAL是什么关系?
    • 1.2 OSAL可以解决Z-stack在不同厂商的芯片上的使用吗?
  • 二、协议栈运行机制
    • 2.1 初始化涉及内容
    • 2.2 初始化过程

一、初识OSAL

  OSAL,全称是操作系统抽象层(Operating System Abstraction Layer),是一种在操作系统上建立的软件架构。OSAL就是基于事件的轮询查询系统,它提供了一种方法,使得应用程序可以在多种操作系统上运行,而不需要修改代码。在一个典型的OSAL实现中,你会在应用程序代码和特定操作系统代码之间看到一个OSAL。
  在Zigbee中,OSAL被用来解决在不同芯片、不同操作系统上运行Zigbee Stack的问题。无论是基于RTOS的单片机,还是复杂的嵌入式Linux系统,只要实现了相应的OSAL,Zigbee Stack就可以在上面快速移植。
  基于OSAL的设计,软件在从一个操作系统移植到另一个操作系统时,开发者不需要修改每个操作系统的底层设备驱动,而只需要关注OSAL提供的、对外统一的接口就可以了。
以Silicon Labs的Zigbee协议栈为例,它的OSAL提供了一套用于实现任务控制、内存管理、定时器控制、消息队列、中断管理等功能的API,开发者可以使用这些API来实现对Zigbee应用的开发,而无需关心具体硬件和操作系统的差异。这就使得在不同的硬件平台和操作系统上复用Zigbee应用代码变得可能。
  总的来说,OSAL在Zigbee中的作用主要是提供了一种抽象的软件接口,使得Zigbee应用能在不同的硬件平台和操作系统上运行,而无需做大量的修改工作。

1.1 Z-Stack和Zigbee的OSAL是什么关系?

  Z-Stack是Texas Instruments(TI)开发的一款Zigbee协议栈,它允许开发者在TI的微处理器上开发和应用Zigbee的解决方案。Z-Stack在设计之初,就特意采用了操作系统抽象层(OSAL)的结构来组织软件构成。
  所以,简单来说,Z-Stack是Zigbee的一个实现,而OSAL则是Z-Stack中的一部分。在搭建过程中,OSAL扮演的是一个抽象层的角色,为Z-Stack上的应用提供了一套统一的API接口,让开发者无需关心底层硬件和操作系统的具体实现。通过OSAL,Z-Stack可以在TI的多款微处理器上运行。
  同时,OSAL也容许Z-Stack具有更好的跨平台和可移植性。根据OSAL提供的API,可以在不同的硬件设备和操作系统上复用应用代码,极大地提高了代码的复用性和开发效率。
  简单概括一下,Z-Stack是TI的一款Zigbee协议栈实现,而Zigbee的OSAL则是构成Z-Stack的重要组件,提供了一套统一的API接口,使得应用能兼容并在不同的硬件平台和操作系统上运行。

1.2 OSAL可以解决Z-stack在不同厂商的芯片上的使用吗?

答案是不能
  操作系统抽象层(OSAL)的主要目标是为上层应用提供一个标准的API集合,使得应用开发者无需关心特定的硬件和操作系统实现。然而,尽管OSAL能够提供一种机制使得应用代码变得更加可移植,但是这并不意味着Zigbee的实现可以轻易地在不同厂商的芯片上运行。
  当我们谈到Zigbee和其他类似的无线通信技术时,它们所涉及到的通信协议和硬件要求通常比操作系统接口更为复杂和特定。无论是RF模块还是微处理器本身,都需要特定的驱动程序和底层固件才能正常工作。这些驱动和固件通常由芯片制造商提供,且它们的实现除了需要考虑硬件的特性,也需要满足Zigbee协议的要求。
  因此,即使使用了OSAL,我们也无法直接将一个为特定芯片设计的Zigbee实现移植到另一款芯片上。这通常需要芯片制造商参与,为他们的设备提供特定的Zigbee实现,或者提供足够的底层访问权以便其他厂商或开发者自行实现。
  所以,简而言之,OSAL可以提高Zigbee实现的代码可移植性,但并不能解决所有的移植问题。要在不同的芯片上运行Zigbee,仍然需要对特定的硬件和Zigbee协议有深入的理解,同时也需要有适当的驱动和固件支持。

二、协议栈运行机制

2.1 初始化涉及内容

  操作系统抽象层(OSAL):OSAL是Z-Stack的核心部分,它为使用不同操作系统的应用提供了通用的API接口。这些API包括任务调度、内存管理、计时器管理、中断管理等。
  硬件抽象层(HAL):HAL提供了硬件驱动的抽象,使Z-Stack可以运行在不同的TI芯片上,并且无需修改上层应用代码。
  Z-Stack服务:Z-Stack包含一套底层服务,例如网络管理、设备管理、安全管理等。这些服务负责实现Zigbee协议栈的核心功能。
  应用框架:Z-Stack也为用户提供了一个应用框架,用户可以在这个框架下开发自己的Zigbee应用。应用框架处于OSAL之上,可以直接使用OSAL提供的API。

2.2 初始化过程

Z-Stack协议栈的运行可以分为以下三个步骤:

  1. 初始化:Z-Stack启动时,它首先会执行硬件初始化,包括初始化微控制器、RF模块等硬件设备,然后加载并初始化Zigbee协议栈的软件服务。如下图(未截全):
    在这里插入图片描述

  2. 循环处理:一旦初始化完成,Z-Stack会进入主循环。在主循环中,它会通过OSAL管理并调度不同的任务运行,包括接收和处理来自硬件的中断,执行网络管理、设备管理等各种服务,处理来自上层应用的请求,以及通过RF模块发送和接收数据等。
    在这里插入图片描述

  3. 事件处理:除了主循环处理,Z-Stack还通过OSAL的事件队列机制处理任务之间的通信。每个任务都可以生成事件并发送到其他任务的事件队列中,接收任务在主循环中周期性地查看和处理自己的事件队列。
    在这里插入图片描述
    在这里插入图片描述

OSAL系统的两个关键词:任务与事件
三个关键参数:

  1. TaskCnt:任务个数
  2. taskEvents:指向事件表首地址的指针
  3. taskArray:数组,数组中的每一个元素都是指向事件处理函数的指针
void osal_run_system( void )
{uint8 idx = 0;#ifdef USE_ICALLuint32 next_timeout_prior = osal_next_timeout();
#else /* USE_ICALL */
#ifndef HAL_BOARD_CC2538osalTimeUpdate();
#endifHal_ProcessPoll();	// 查看硬件方面是否有事件发生,例如是否有按键按下、串口是否收到数据等等
#endif /* USE_ICALL */#ifdef USE_ICALL{/* Update osal timers to the latest before running any OSAL processes* regardless of wakeup callback from ICall because OSAL timers are added* relative to the current time. */unsigned long newtimestamp = ICall_getTicks();uint32 milliseconds;if (osal_tickperiod == 1000){milliseconds = newtimestamp - osal_last_timestamp;osal_last_timestamp = newtimestamp;}else{unsigned long long delta = (unsigned long long)((newtimestamp - osal_last_timestamp) & 0xfffffffful);delta *= osal_tickperiod;delta /= 1000;milliseconds = (uint32) delta;osal_last_timestamp += (uint32) (delta * 1000 / osal_tickperiod);}osalAdjustTimer(milliseconds);/* Set a value that will never match osal_next_timeout()* return value so that the next time can be scheduled.*/next_timeout_prior = 0xfffffffful;}if (osal_eventloop_hook){osal_eventloop_hook();}for (;;){void *msg;ICall_EntityID src, dst;osal_msg_hdr_t *hdr;uint8 dest_id;if (ICall_fetchMsg(&src, &dst, &msg) != ICALL_ERRNO_SUCCESS){break;}hdr = (osal_msg_hdr_t *) msg - 1;dest_id = osal_dispatch2id(dst);if (dest_id == TASK_NO_TASK){/* Something wrong */ICall_abort();}else{/* Message towards one of the tasks *//* Create a proxy task ID if necessary and* queue the message to the OSAL internal queue.*/uint8 proxyid = osal_alien2proxy(hdr->srcentity);if (hdr->format == ICALL_MSG_FORMAT_1ST_CHAR_TASK_ID){uint8 *bytes = msg;*bytes = proxyid;}else if (hdr->format == ICALL_MSG_FORMAT_3RD_CHAR_TASK_ID){uint8 *bytes = msg;bytes[2] = proxyid;}/* now queue the message to the OSAL queue */osal_msg_send(dest_id, msg);}}
#endif /* USE_ICALL */do {if (tasksEvents[idx])  // 判断是否有事件发生,当事件发生时,对应的元素会被置1,此时idx表示的就是哪一个事件被触发{break;	// 跳出do...while}} while (++idx < tasksCnt);if (idx < tasksCnt)		// idx检查合法性{uint16 events;halIntState_t intState;HAL_ENTER_CRITICAL_SECTION(intState);	// 进入临界区,这是操作系统的常规操作,避免由于中断影响程序的正常运行events = tasksEvents[idx];tasksEvents[idx] = 0;  // 置0,表示处理器接下来会去处理该事件对应的任务。HAL_EXIT_CRITICAL_SECTION(intState);	//退出临界区activeTaskID = idx;events = (tasksArr[idx])( idx, events );	// taskArr的每个元素都指向对应事件的处理函数,括号就是处理函数的形参activeTaskID = TASK_NO_TASK;HAL_ENTER_CRITICAL_SECTION(intState);	// 进入临界区tasksEvents[idx] |= events;   // Add back unprocessed events to the current task.//把未处理的事件返回给事件表,因为触发的事件可能不止一个,且一次循环只会完成一次事件处理,所以需要返回未处理事件HAL_EXIT_CRITICAL_SECTION(intState);	// 关闭临界区}
#if defined( POWER_SAVING ) && !defined(USE_ICALL)else  // Complete pass through all task events with no activity?{osal_pwrmgr_powerconserve();  // Put the processor/system into sleep}
#endif/* Yield in case cooperative scheduling is being used. */
#if defined (configUSE_PREEMPTION) && (configUSE_PREEMPTION == 0){osal_task_yield();}
#endif#if defined USE_ICALL/* Note that scheduling wakeup at this point instead of* scheduling it upon ever OSAL start timer request,* would only work if OSAL start timer call is made* from OSAL tasks, but not from either ISR or* non-OSAL application thread.* In case, OSAL start timer is called from non-OSAL* task, the scheduling should be part of OSAL_Timers* module.* Such a change to OSAL_Timers module was not made* in order not to diverge the OSAL implementations* too drastically between pure OSAL solution vs.* OSAL upon service dispatcher (RTOS).* TODO: reconsider the above statement.*/{halIntState_t intState;uint32 next_timeout_post = osal_next_timeout();if (next_timeout_post != next_timeout_prior){/* Next wakeup time has to be scheduled */if (next_timeout_post == 0){/* No timer. Set time to the max */next_timeout_post = OSAL_TIMERS_MAX_TIMEOUT;}if (next_timeout_post > osal_max_msecs){next_timeout_post = osal_max_msecs;}/* Restart timer */HAL_ENTER_CRITICAL_SECTION(intState);ICall_stopTimer(osal_timerid_msec_timer);ICall_setTimerMSecs(next_timeout_post, osal_msec_timer_cback,(void *) (++osal_msec_timer_seq),&osal_timerid_msec_timer);HAL_EXIT_CRITICAL_SECTION(intState);}}
#endif /* USE_ICALL */
}

Z-Stack的这种设计,使得应用代码可以在不同的TI微控制器系列产品上运行,而无需做任何修改。同时,通过服务和事件的设计,使得任务间的通信更加简洁高效。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645981.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【送书活动八期】docker容器中登陆并操作postgresql

这里的背景比较简单&#xff0c;因为区块链浏览器使用的是blockscout&#xff0c;blockscout的数据库选择的是postgresql&#xff0c;这些服务组件都是使用的docker容器来管理&#xff0c;今天进行区块链上交易查询的时候&#xff0c;发现数据存在部分问题&#xff0c;因此需要…

《WebKit 技术内幕》学习之十(4): 插件与JavaScript扩展

4 Chromium扩展机制 4.1 原理 Chromium的扩展&#xff08;Extension&#xff09;机制 (1) 原先是Chromium推出的一项技术&#xff0c;该机制能够扩展浏览器的能力&#xff0c;例如笔者使用的一个扩展实例名为“switchy proxy”&#xff0c;它可以帮助用户方便的切换Chromium…

Kotlin for loop: in、 until、 step、 downTo

Kotlin for loop: in、 until、 step、 downTo fun loop1() {for (i in 0..5) {print("$i ")}println("\n1-end\n") }fun loop2() {for (i in 0 until 5) {print("$i ")}println("\n2-end\n") }fun loop3() {for (i in 0 until (5)) {…

提高塑料制品的塑料透光率测量仪

塑料透光率检测仪是一种用于测量塑料材料透光率的仪器。透光率是指光线通过材料后&#xff0c;被吸收、反射和散射的量与总光线量的比例。塑料透光率检测仪在塑料制品的研发、生产和质量控制等方面具有广泛的应用。 塑料透光率检测仪的原理是使用光束通过待测塑料样品&#xff…

【神奇代码岛】VOXA新岛畅玩指南

前言 最近神奇代码岛不是迎来了重大更新嘛&#xff0c;有可能有很多人还不知道新版的神岛有什么重大更新&#xff0c;我现在来一一说明 重大更新 这一次我们将以代码、地图编辑器、建模编辑器来说明 代码 主要是增加了许多API&#xff0c;比如UI、玩家皮肤等许多新的API …

【推荐100个unity插件之16】3D物品描边效果——Quick Outline免费插件

文章目录 前言地址介绍使用例子完结 前言 关于3D描边&#xff0c;其实之前有用shader弄过一个&#xff1a;【实现100个unity特效】shader实现3D物品闪光和描边效果 但是很遗憾的是他不支持URP项目&#xff0c;所以现在推荐这款插件&#xff0c;他能很好的支持URP&#xff0c;…

Pycharm终端显示PS而不显示虚拟环境venv

PS表示当前使用的是powershell.exe&#xff0c;如果你要显示虚拟环境名&#xff0c;则要改为cmd.exe 解决办法&#xff1a; 打开File-settings-Tools-Terminal-shell path 在文件中找到设置&#xff0c;在工具中找到终端 把第四个Shell路径设置为cmd.exe 3. 点击确定&#xf…

springCloud的ribbon和feign

ribbon方式调用 就是将原来的具体地址&#xff0c;改为了通过服务名去调用。注册中心中有多个服务&#xff0c;相同服务名&#xff0c;就会算作可以调用的服务。 首先得有一个注册中心&#xff0c;然后各种服务注册进去&#xff0c;然后利用ribbon或者feign去调用。 ribbon是直…

map地图

地图想必大家都很熟悉&#xff0c;地图的应用非常广泛&#xff0c;我们出远门通常都会用到&#xff0c;下面我来给大家讲解一下地图&#xff01; 首先我们要知道该怎样下载地图&#xff1f; 1.地图的版本有很多&#xff0c;我们选择一款&#xff0c;前往地图开发者中心。 2.…

《机器学习》客户流失判断-python实现

客户流失判断 题目赛题描述数据说明赛题来源-DataCastle 问题描述解题思路Python实现读取数据并初步了解导入宏包读取数据查看数据类型检查缺失值描述性统计分析 可视化分析用户流失分析特征分析任期年数与客户流失的关系&#xff1a;服务类属性分析特征相关性分析 数据预处理类…

༺༽༾ཊ—Unity之-01-单例模式—ཏ༿༼༻

在游戏开发过程中&#xff0c;我们会创建各种各样的类&#xff0c;再用new生成实例&#xff0c;有些时候我们需要这个类在整个游戏中是唯一出现的&#xff0c;比如一些管理器比如声音管理器等&#xff0c;没必要创建很多实例&#xff0c;就算有很多模块需要各种声音功能&#x…

信号量机制解决经典同步互斥问题

生产者 / 消费者问题、读者 / 写者问题和哲学家问题是操作系统的三大经典同步互斥问题。本文将介绍这三个问题的基本特点以及如何用信号量机制进行解决。 在分析这三个问题之前&#xff0c;我们首先需要了解用信号量机制解决同步互斥问题的一般规律&#xff1a; 实现同步与互斥…

制造领域 物料清单(BOM)与零件明细表的区别

有许多人分不清物料清单(BOM)与零件明细表的区别,其实它们在企业的生产管理软件中起着不同的作用,各有各的特色,但是却有不尽相同。接下来我们就来区分一下吧 物料清单(BOM)&#xff0c;是详细记录一个项目所用到的所有下阶材料及相关属性&#xff0c;亦即母件与所有子件的从属…

求职应聘找工作,你一定会遇到的人才测评

信息时代&#xff0c;越来越多的公司在招聘时引入了人才测评机制。企业和单位希望通过人才测评在广大的应聘者中&#xff0c;找到符合自己要求的人才。虽然很多应聘者能力和简历都比较出众&#xff0c;但却在最开始的人才测评中吃了亏。有的公司很看重人才测评结果。测评就相当…

76.Go分布式ID总览

文章目录 简介一&#xff1a;UUID二、雪花算法三&#xff1a;Leaf-snowflake四&#xff1a;数据库自增ID五&#xff1a;使用Redis实现分布式ID生成六&#xff1a;使用数据库分段&#xff08;Leaf-segment&#xff09;七 &#xff1a;增强版Leaf-segment八&#xff1a;Tinyid九&…

Vue实现图片预览,侧边栏懒加载,不用任何插件,简单好用

实现样式 需求 实现PDF上传预览&#xff0c;并且不能下载 第一次实现&#xff1a;用vue-pdf&#xff0c;将上传的文件用base64传给前端展示 问题&#xff1a; 水印第一次加载有后面又没有了。当上传大的pdf文件后&#xff0c;前端获取和渲染又长又慢&#xff0c;甚至不能用 修…

Docker K8s-存储相关概念

Docker中的存储有两个概念&#xff1a;存储驱动程序Storage Driver和卷驱动程序Volumes Drivers。 存储驱动 Storage Driver 首先我们来看一下安装docker以后&#xff0c;docker的文件夹下面有哪些内容&#xff1a; cd /var/lib/docker && ll这里存储了所有的数据&a…

力扣hot100 轮转数组 一题多解 翻转数组

Problem: 189. 轮转数组 文章目录 思路复杂度Code 思路 &#x1f468;‍&#x1f3eb; 参考 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( 1 ) O(1) O(1) Code class Solution {public void rotate(int[] nums, int k){int n nums.length;k k % n;reverse(…

Git搭建

文件格式 <VirtuaHost * 80> nginx </virtualHost> pache xml server {} nginx conf格式 [xx] 配置内容 代码开发中版本控制,项目代码编译构建,项目版本迭代全流程 命令300条 Hospital Information System 开发语言分类: 编译型: C nginx ma…

ArcEngine添加点要素、线要素、面要素及学习总结

基于C#的ArcEngine二次开发教程&#xff08;13&#xff09;&#xff1a;点、线、面要素的绘制_arcengine onmousedown-CSDN博客 https://www.cnblogs.com/cannel/p/11074343.html ArcEngine绘制点、线、多边形、矩形、圆形、椭圆的代码_arcengine 开发 生成矩形-CSDN博客 https…