JVM实战篇:GC调优

目录

一.GC调优的核心指标

1.1吞吐量(Throughput)

1.2延迟(Latency)

1.3内存使用量

二.GC调优的方法

2.1监控工具

Jstat工具

VisualVm插件

Prometheus + Grafana

2.2诊断原因

GC日志

GC Viewer

GCeasy

2.3常见的GC模式

正常情况

缓存对象过多

内存泄漏

持续的FULL GC

元空间不足导致的FULL GC

三.修复GC问题

3.1优化基础JVM参数

参数1 : -Xmx 和 –Xms

参数2 : -XX:MaxMetaspaceSize 和 –XX:MetaspaceSize

参数3 : -Xss虚拟机栈大小

不建议手动设置的参数

其他参数

3.2垃圾回收器的选择


GC调优

GC调优指的是对垃圾回收(Garbage Collection)进行调优。GC调优的主要目标是避免由垃圾回收引起程序性能下降。

GC调优的核心分成三部分:

  1. 通用JVM参数的设置。
  2. 特定垃圾回收器的JVM参数的设置。
  3. 解决由频繁的FULL GC引起的程序性能问题。

GC调优没有唯一的标准答案,如何调优与硬件、程序本身、使用情况均有关系,重点学习调优的工具和方法。

一.GC调优的核心指标

所以判断GC是否需要调优,需要从三方面来考虑,与GC算法的评判标准类似:

1.1吞吐量(Throughput)

吞吐量分为业务吞吐量垃圾回收吞吐量

业务吞吐量指的在一段时间内,程序需要完成的业务数量。比如企业中对于吞吐量的要求可能会是这样的:

  • 支持用户每天生成10000笔订单
  • 在晚上8点到10点,支持用户查询50000条商品信息

保证高吞吐量的常规手段有两条:

  1. 优化业务执行性能,减少单次业务的执行时间
  2. 优化垃圾回收吞吐量

垃圾回收吞吐量指的是 CPU 用于执行用户代码的时间与 CPU 总执行时间的比值,即吞吐量 = 执行用户代码时间 /(执行用户代码时间 + GC时间)。吞吐量数值越高,垃圾回收的效率就越高,允许更多的CPU时间去处理用户的业务,相应的业务吞吐量也就越高。

1.2延迟(Latency)

延迟指的是从用户发起一个请求到收到响应这其中经历的时间。

延迟 = GC延迟 + 业务执行时间,所以如果GC时间过长,会影响到用户的使用。

1.3内存使用量

内存使用量指的是Java应用占用系统内存的最大值,一般通过JVM参数调整,在满足上述两个指标的前提下, 这个值越小越好。

通常这3个指标不能同时兼顾

二.GC调优的方法

2.1监控工具

Jstat工具

无法精确到GC产生的时间,只能 用于判断GC是否存在问题

VisualVm插件

Prometheus + Grafana

2.2诊断原因

GC日志

通过GC日志,可以更好的看到垃圾回收细节上的数据,同时也可以根据每款垃圾回收器的不同特点更好地发现存在的问题。

  • 使用方法(JDK 8及以下):-XX:+PrintGCDetails -Xloggc:文件名
  • 使用方法(JDK 9+):-Xlog:gc*:file=文件名

注: -verbose:gc 是将GC日志输出到控制台上,而上面是将GC日志单独输出到一个文件

GC Viewer

GCViewer是一个将GC日志转换成可视化图表的小工具,github地址:https://github.com/chewiebug/GCViewer

使用方法:java -jar gcviewer的jar包 日志文件.log

GCeasy

GCViewer是将GC日志可视化,而GCeasy是业界首款使用AI机器学习技术在线进行GC分析和诊断的工具。定位内存泄漏、GC延迟高的问题,提供JVM参数优化建议,支持在线的可视化工具图表展示。官方网站:Universal JVM GC analyzer - Java Garbage collection log analysis made easy (gceasy.io)

2.3常见的GC模式

正常情况

特点:呈现锯齿状,对象创建之后内存上升,一旦发生垃圾回收之后下降到底部,并且每次下降之后的内存大小接近,存留的对象较少。

缓存对象过多

特点:呈现锯齿状,对象创建之后内存上升,一旦发生垃圾回收之后下降到底部,并且每次下降之后的内存大小接近,处于比较高的位置。

问题产生原因: 程序中保存了大量的缓存对象,导致GC之后无法释放,可以使用MAT或者HeapHero等工具进行分析内存占用的原因。

内存泄漏

特点:呈现锯齿状,每次垃圾回收之后下降到的内存位置越来越高,最后由于垃圾回收无法释放空间导致对象无法分配产生OutOfMemory的错误。

问题产生原因: 程序中保存了大量的内存泄漏对象,导致GC之后无法释放,可以使用MAT或者HeapHero等工具 进行分析是哪些对象产生了内存泄漏。

持续的FULL GC

特点:在某个时间点产生多次Full GC,CPU使用率同时飙高,用户请求基本无法处理。一段时间之后恢复正常。

问题产生原因:在该时间范围请求量激增,程序开始生成更多对象,同时垃圾收集无法跟上对象创建速率,导致持续地在进行FULL GC。

元空间不足导致的FULL GC

特点:堆内存的大小并不是特别大,但是持续发生FULL GC。

问题产生原因:元空间大小不足,超过了Java虚拟机设置的阈值,导致持续FULL GC回收元空间的数据。

三.修复GC问题

解决GC问题的手段中,前三种是比较推荐的手段,第四种仅在前三种无法解决时选用:

3.1优化基础JVM参数

参数1 : -Xmx 和 –Xms

-Xmx参数设置的是最大堆内存,但是由于程序是运行在服务器或者容器上,计算可用内存时,要将元空间、操作系统、 其它软件占用的内存排除掉。

案例:服务器内存4G,操作系统+元空间最大值+其它软件占用1.5G,-Xmx可以设置为2g。

最合理的设置方式应该是根据最大并发量估算服务器的配置,然后再根据服务器配置计算最大堆内存的值。

-Xms用来设置初始堆大小,建议将-Xms设置的和-Xmx一样大,有以下几点好处:

  1. 运行时性能更好,堆的扩容是需要向操作系统申请内存的,这样会导致程序性能短期下降。
  2. 可用性问题,如果在扩容时其他程序正在使用大量内存,很容易因为操作系统内存不足分配失败。
  3. 启动速度更快,Oracle官方文档的原话:如果初始堆太小,Java 应用程序启动会变得很慢,因为 JVM 被迫频繁执行垃圾收集,直到堆增长到更合理的大小。为了获得最佳启动性能,请将初始堆大小设置为与最大堆大小相同。

参数2 : -XX:MaxMetaspaceSize 和 –XX:MetaspaceSize

  • -XX:MaxMetaspaceSize=值 参数指的是最大元空间大小,默认值比较大,如果出现元空间内存泄漏会让操作系统可用内存不可控,建议根据测试情况设置最大值,一般设置为256m。当元空间大小超过这个值时,会抛出OutOfMemoryError。
  • -XX:MetaspaceSize=值 参数指的是到达这个值之后会触发FULL GC(指的不是初始元空间大小), 后续什么时候再触发JVM会自行计算。如果设置为和MaxMetaspaceSize一样大,就不会FULL GC,但是对象也无法回收。

参数3 : -Xss虚拟机栈大小

如果我们不指定栈的大小,JVM 将创建一个具有默认大小的栈。大小取决于操作系统和计算机的体系结构。 比如Linux x86 64位 : 1MB,如果不需要用到这么大的栈内存,完全可以将此值调小节省内存空间,合理值为256k – 1m之间。

使用:-Xss256k

不建议手动设置的参数

由于JVM底层设计极为复杂,一个参数的调整也许让某个接口得益,但同样有可能影响其他更多接口。

  • -Xmn 年轻代的大小,默认值为整个堆的1/3,可以根据峰值流量计算最大的年轻代大小,尽量让对象只存放在年轻代,不进入老年代。但是实际的场景中,接口的响应时间、创建对象的大小、程序内部还会有一些定时任务等不 确定因素都会导致这个值的大小并不能仅凭计算得出,如果设置该值要进行大量的测试。G1垃圾回收器尽量不要设置该值,G1会动态调整年轻代的大小。
  • ‐XX:SurvivorRatio 伊甸园区和幸存者区的大小比例,默认值为8。
  • ‐XX:MaxTenuringThreshold 最大晋升阈值,年龄大于此值之后,会进入老年代。另外JVM有动态年龄判断机制:当 survior 区域的存活对象的总大小占用了 survior 区域大小的50%(可以通过参数指定),那么此时将按照这些对象的存活年龄从小到大排序,然后依次累加,当累加到对象大小超过50%,则将大于等于当前对象年龄的存活对象全部挪到老年代。

其他参数

  • -XX:+DisableExplicitGC 禁止在代码中使用System.gc(), System.gc()可能会引起FULL GC,在代码中尽量不要使用。使用DisableExplicitGC参数可以禁止使用System.gc()方法调用。
  • -XX:+HeapDumpOnOutOfMemoryError 发生OutOfMemoryError错误时,自动生成hprof内存快照文件。
  • -XX:HeapDumpPath= 指定hprof文件的输出路径。
  • 打印GC日志

    • JDK8及之前 : -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:文件路径

    • JDK9及之后 : -Xlog:gc*:file=文件路径

3.2垃圾回收器的选择

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/640950.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手把手教你开发第一个HarmonyOS (鸿蒙)移动应用

⼀、移动应⽤开发的介绍 移动应⽤开发: AndroidIOSHarmonyOS (鸿蒙) ⼆、HarmonyOS介绍 文档概览-HarmonyOS应用开发官网 2.1 系统的定义 2.1.1 系统的定位 HarmonyOS有三⼤特征: 搭载该操作系统的设备在系统层⾯融为⼀体、形成超级终…

opencv#27模板匹配

图像模板匹配原理 例如给定一张图片,如上图大矩阵所示,然后给定一张模板图像,如上图小矩阵。 我们在大图像中去搜索与小图像中相同的部分或者是最为相似的内容。比如我们在图像中以灰色区域给出一个与模板图像尺寸大小一致的区域,…

CRM的定义、功能,以及国内外CRM系统排名

什么是客户关系管理? CRM是(客户关系管理)的缩写,是一个管理与客户关系的系统。CRM的主要功能是管理基本客户信息和购买历史的客户管理、分析潜在客户和新客户的客户分析、对询问的自动回复的响应以及通过电子邮件通讯和研讨会吸引客户。它是加强和维护与客户和潜…

opencv#30 线性滤波

均值滤波原理 均值滤波步骤 Step1:求和。 Step2:计算平均值。 所谓均值滤波,就是求平均值的意思。我们假设在一个3*3的范围内有一个图像,其中这个图像每一个像素可能含有噪声,也可能不含噪声,我们是不知道的,因此通…

持续集成工具Jenkins的使用之配置篇(二)

上一篇 :持续集成工具Jenkins的安装配置之安装篇(一)-CSDN博客 接上文 三.Jenkins配置 Jenkins配置主要是针对创建构建任务前做的一些基本配置,这些配置有些是必须的,有些是可以帮我们提高效率的,总之都是Jenkins管理员都要会的…

从物联网看智慧文旅的未来:技术与实践的完美结合,重塑旅游体验的新篇章

一、物联网技术:智慧文旅的基石 随着科技的飞速发展,物联网技术已经深入到我们生活的方方面面,尤其在智慧文旅领域,物联网技术更是起到了不可或缺的作用。它如同智慧文旅的基石,为旅游行业带来了前所未有的创新和变革…

VRRP6协议--负载均衡配置

VRRP6负载均衡 VRRP6负载均衡指的是创建多个备份组,多个备份组同时承担数据转发的任务,对于每一个备份组,都有自己的Master和若干Backup设备。 VRRP6负载分担与VRRP6主备备份的基本原理和报文协商过程都是相同的。同样对于每一个VRRP6备份组,都包含一个Master设备和若干Ba…

统计中集中趋势的衡量标准

一、说明 统计中的中心趋势是用于表示大量数值数据的中间值或中心值的数值。这些获得的数值在统计学中称为中心值或平均值。 任何统计数据或序列的中心值或平均值是代表整个数据或其相关频率分布的变量的值。这样的值具有重要意义,因为它描绘了整个数据的性质或特征…

针对特定领域较小的语言模型是否与较大的模型同样有效?

经过2023年的发展,大语言模型展示出了非常大的潜力,训练越来越大的模型成为有效性评估的一个关键指标,论文《A Comparative Analysis of Fine-Tuned LLMs and Few-Shot Learning of LLMs for Financial Sentiment Analysis》中,作…

阿里云 SAE 2.0 正式商用:极简易用、百毫秒弹性效率,降本 40%

作者:黛忻 本文主要介绍阿里云 Serverless 应用引擎(以下简称 SAE )如何帮助企业跨越技术鸿沟,从传统应用架构无感升级到 Serverless 架构,以更高效、更经济的方式进行转型,快速进入云原生快车道&#xff0…

【Android】TypedArray的使用

介绍 看电池电量组件BatteryMeterView的时候看到的。 Array是个数组,所有TypedArray也是个容器,基本是用于自定义View里面的(至少我目前见过的全部都在自定义View里面)。 使用 1.自定义View public class RoundSeekbarView e…

【深度学习】BasicSR训练过程记录,如何使用BasicSR训练GAN

文章目录 两种灵活的使用场景项目结构概览简化的使用方式 项目结构解读1. 代码的入口和训练的准备工作2. data和model的创建2.1 dataloader创建2.2 model的创建 3. 训练过程 动态实例化的历史演进1. If-else判断2. 动态实例化3. REGISTER注册机制 REGISTER注册机制的实现1. DAT…

嵌入式基础知识-测试基础概念

本篇来介绍嵌入式项目开发中,软件测试的相关基础知识。 1 测试基础知识 测试是指:在规定的条件下对程序进行操作,以发现错误,对软件质量进行评估 测试的对象包括程序、数据和文档 对于测试,并不是只有测试人员才需…

读AI3.0笔记04_视觉识别

1. 两次飞跃 1.1. ConvNets是当今计算机视觉领域深度学习革命的驱动力 1.1.1. 20世纪80年代便由法国计算机科学家杨立昆提出,而他则是受到了福岛邦彦提出的神经认知机(Neocognitron)的启发 1.2. ImageNet竞赛被看作计算机视觉和人工智能进…

Docker 配置 Gitea + Drone 搭建 CI/CD 平台

Docker 配置 Gitea Drone 搭建 CI/CD 平台 配置 Gitea 服务器来管理项目版本 本文的IP地址是为了方便理解随便打的,不要乱点 首先使用 docker 搭建 Gitea 服务器,用于管理代码版本,数据库选择mysql Gitea 服务器的 docker-compose.yml 配…

Kubernetes(K8S)拉取本地镜像部署Pod 实现类似函数/微服务功能(可设置参数并实时调用)

以两数相加求和为例,在kubernetes集群拉取本地的镜像,实现如下效果: 1.实现两数相加求和 2.可以通过curl实时调用,参数以GET方式提供,并得到结果。(类似调用函数) 一、实现思路 需要准备如下的…

分布式websocket IM聊天系统相关问题问答【第九期】

前言 上期视频讲解了自己关于聊天系统的设计的时候出现了一些不一样的声音。不了解情况的可以看上上期视频。这期主要是讨论。IM聊天系统设计方案多。我的先说明一下自己的技术背景互相之间才能更好的理解。 本期对应视频 目前已经写的文章有。并且有对应视频版本。 git项目地…

FPGA中跨时钟域传数据——(1)单bit脉冲

FPGA中跨时钟域传数据——(1)单bit脉冲 亚稳态模型由快时钟传到慢时钟由慢时钟传到快时钟 亚稳态模型 必须在建立时间和保持时间内,数据不变化,否则会产生亚稳态。 由快时钟传到慢时钟 在快时钟里面进行数据展宽(…

牛客周赛 Round 20 解题报告 | 珂学家 | 状压DP/矩阵幂优化 + 前缀和的前缀和

前言 整体评价 这场比赛很特别,是牛客周赛的第20场,后两题难度直线飙升了。 前四题相对简单,E题是道状压题,历来状压题都难,F题压轴难题了,感觉学到了不少。 A. 赝品 先求的最大值 然后统计非最大值的个…

位置无关码PIC详解:原理、动态链接库、代码重定位

静态链接库将代码和数据在编译时整合到可执行文件,使程序独立运行。动态链接库允许在程序运行时加载,而不是在编译时将库的代码和数据静态地合并到可执行文件中。这允许多个程序共享同一份库,减小程序体积。由于动态链接库在编译时并未确定其…