opencv#27模板匹配

图像模板匹配原理

     例如给定一张图片,如上图大矩阵所示,然后给定一张模板图像,如上图小矩阵。

     我们在大图像中去搜索与小图像中相同的部分或者是最为相似的内容。比如我们在图像中以灰色区域给出一个与模板图像尺寸大小一致的区域,通过比较灰色区域中的内容与模板中的内容,两者如果一致,那么则认定两者是相似的,从而实现了在目标图像中寻找模板图像的匹配过程,若两者不一致,比如上图阴影区域中第一个像素值为3,而模板中第一个像素值为4,那么两者之间存在差距,通过每一个对应像素之间进行一次度量计算作为模板匹配中的匹配系数(度量矩阵),之后移动图像中的阴影区域(一次移动一个像素,从左往右,从上往下),再次对阴影区域所对应的像素值与模板中的像素进行度量计算得到模板匹配系数,每移动一次阴影区域就可以得到一个模板匹配系数,之后寻找这个系数所代表的匹配的最佳结果的位置即为最终的匹配结果(相似程度最高)。

    如上图所示用TM_CCORR_NORMED方法处理后的result为度量矩阵(即匹配系数),最白的位置代表最高的匹配系数,以系数最佳(最大或者最小,看你用什么算法)为顶点(即图像的左上角点,opencv中图像坐标原点为左上角点,y向下值越大,x向右值越大),做一个长宽和模板图像一样大小的矩形框,即为最佳匹配的区域。

实际中我们可以使用函数minMaxLoc来定位矩阵R中的最大值(最小值)。

图像模板匹配函数

matchTenplate()

vodi cv::matchTemplate(InputArray  image,InputArray  templ,OutputArray result,int         method,InputArray  mask = noArray())

·image:待模板匹配的原图像,图像数据类型为CV_8U和CV_32F两者之一。

·templ:模板图像,需要与image具有相同的数据类型,但是尺寸不能大于image。

·result:模板匹配结果输出图像,图像数据类型为CV_32F。如果image的尺寸为W*H,模板图像尺寸为w*h,则输出图像的尺寸为(W-w+1) * (H-h+1)。

·method:模板匹配方法标志。

·mask:匹配模板的掩码,必须与模板图像具有相同的数据类型和尺寸,默认情况下不设置,目前仅支持在TM_SQDIFF和TM_CCORR_NORMED这两种匹配方法时使用。

图像模板匹配方法标志

·平方差匹配TM_SQDIFF:

最好匹配为0,匹配程度越低,值越大。

·标准平方差匹配TM_SQDIFF_NORMED:

·相关匹配TM_CCORR:

此类方法采用模板与图像间的乘法操作,所以较大的数表示匹配程度高,0表示最差的匹配效果。

·标准相关匹配TM_CCORR_NORMED:

·系数匹配TM_CCOEFF:

此类方法将模板对其均值的相对值与图像对其均值的相对值进行匹配,1表示完美匹配,-1表示糟糕匹配,0表示没有任何相关性(随机序列)。

·标准系数匹配:TM_CCOEFF_NORMED:

随着从简单的测量(平方差)到更复杂的测量(相关系数),我们可获得越来越准确的匹配(也意味着越来越大的计算代价),最好的办法是对所有这些设置多做一些测试实验,以便为自己的应用选择同时兼顾速度和精度的最佳方案。

示例:
#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv; //opencv的命名空间
using namespace std;//主函数
int main()
{Mat img = imread("E:/opencv/opencv-4.6.0-vc14_vc15/opencv/lenac.png");Mat temp = imread("E:/opencv/opencv-4.6.0-vc14_vc15/opencv/lena_face.png");//模板图像Mat result; //匹配结果matchTemplate(img, temp, result, TM_CCOEFF_NORMED);//模板匹配函数double maxval, minval;Point maxLoc, minLoc;minMaxLoc(result, &minval, &maxval, &minLoc, &maxLoc);//最大值最小值寻找函数//然后我们在图像中找到最大值的位置,绘制出匹配成功的区域,就能够在图像中看到最佳匹配的结果rectangle(img, Point(maxLoc.x, maxLoc.y), Point(maxLoc.x + temp.cols, maxLoc.y + temp.rows), Scalar(0, 0, 255), 2);//矩形框绘制
circle(img, Point(maxLoc.x, maxLoc.y), 1, Scalar(255, 0, 120), 30); //最大值点的位置imshow("原图像", img);imshow("模板图像", temp);imshow("result", result);waitKey(0);//等待函数用于显示图像return 0;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/640947.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CRM的定义、功能,以及国内外CRM系统排名

什么是客户关系管理? CRM是(客户关系管理)的缩写&#xff0c;是一个管理与客户关系的系统。CRM的主要功能是管理基本客户信息和购买历史的客户管理、分析潜在客户和新客户的客户分析、对询问的自动回复的响应以及通过电子邮件通讯和研讨会吸引客户。它是加强和维护与客户和潜…

opencv#30 线性滤波

均值滤波原理 均值滤波步骤 Step1:求和。 Step2:计算平均值。 所谓均值滤波&#xff0c;就是求平均值的意思。我们假设在一个3*3的范围内有一个图像&#xff0c;其中这个图像每一个像素可能含有噪声&#xff0c;也可能不含噪声&#xff0c;我们是不知道的&#xff0c;因此通…

持续集成工具Jenkins的使用之配置篇(二)

上一篇 &#xff1a;持续集成工具Jenkins的安装配置之安装篇(一)-CSDN博客 接上文 三.Jenkins配置 Jenkins配置主要是针对创建构建任务前做的一些基本配置&#xff0c;这些配置有些是必须的&#xff0c;有些是可以帮我们提高效率的&#xff0c;总之都是Jenkins管理员都要会的…

从物联网看智慧文旅的未来:技术与实践的完美结合,重塑旅游体验的新篇章

一、物联网技术&#xff1a;智慧文旅的基石 随着科技的飞速发展&#xff0c;物联网技术已经深入到我们生活的方方面面&#xff0c;尤其在智慧文旅领域&#xff0c;物联网技术更是起到了不可或缺的作用。它如同智慧文旅的基石&#xff0c;为旅游行业带来了前所未有的创新和变革…

VRRP6协议--负载均衡配置

VRRP6负载均衡 VRRP6负载均衡指的是创建多个备份组,多个备份组同时承担数据转发的任务,对于每一个备份组,都有自己的Master和若干Backup设备。 VRRP6负载分担与VRRP6主备备份的基本原理和报文协商过程都是相同的。同样对于每一个VRRP6备份组,都包含一个Master设备和若干Ba…

统计中集中趋势的衡量标准

一、说明 统计中的中心趋势是用于表示大量数值数据的中间值或中心值的数值。这些获得的数值在统计学中称为中心值或平均值。 任何统计数据或序列的中心值或平均值是代表整个数据或其相关频率分布的变量的值。这样的值具有重要意义&#xff0c;因为它描绘了整个数据的性质或特征…

针对特定领域较小的语言模型是否与较大的模型同样有效?

经过2023年的发展&#xff0c;大语言模型展示出了非常大的潜力&#xff0c;训练越来越大的模型成为有效性评估的一个关键指标&#xff0c;论文《A Comparative Analysis of Fine-Tuned LLMs and Few-Shot Learning of LLMs for Financial Sentiment Analysis》中&#xff0c;作…

阿里云 SAE 2.0 正式商用:极简易用、百毫秒弹性效率,降本 40%

作者&#xff1a;黛忻 本文主要介绍阿里云 Serverless 应用引擎&#xff08;以下简称 SAE &#xff09;如何帮助企业跨越技术鸿沟&#xff0c;从传统应用架构无感升级到 Serverless 架构&#xff0c;以更高效、更经济的方式进行转型&#xff0c;快速进入云原生快车道&#xff0…

【Android】TypedArray的使用

介绍 看电池电量组件BatteryMeterView的时候看到的。 Array是个数组&#xff0c;所有TypedArray也是个容器&#xff0c;基本是用于自定义View里面的&#xff08;至少我目前见过的全部都在自定义View里面&#xff09;。 使用 1.自定义View public class RoundSeekbarView e…

【深度学习】BasicSR训练过程记录,如何使用BasicSR训练GAN

文章目录 两种灵活的使用场景项目结构概览简化的使用方式 项目结构解读1. 代码的入口和训练的准备工作2. data和model的创建2.1 dataloader创建2.2 model的创建 3. 训练过程 动态实例化的历史演进1. If-else判断2. 动态实例化3. REGISTER注册机制 REGISTER注册机制的实现1. DAT…

嵌入式基础知识-测试基础概念

本篇来介绍嵌入式项目开发中&#xff0c;软件测试的相关基础知识。 1 测试基础知识 测试是指&#xff1a;在规定的条件下对程序进行操作&#xff0c;以发现错误&#xff0c;对软件质量进行评估 测试的对象包括程序、数据和文档 对于测试&#xff0c;并不是只有测试人员才需…

读AI3.0笔记04_视觉识别

1. 两次飞跃 1.1. ConvNets是当今计算机视觉领域深度学习革命的驱动力 1.1.1. 20世纪80年代便由法国计算机科学家杨立昆提出&#xff0c;而他则是受到了福岛邦彦提出的神经认知机&#xff08;Neocognitron&#xff09;的启发 1.2. ImageNet竞赛被看作计算机视觉和人工智能进…

Docker 配置 Gitea + Drone 搭建 CI/CD 平台

Docker 配置 Gitea Drone 搭建 CI/CD 平台 配置 Gitea 服务器来管理项目版本 本文的IP地址是为了方便理解随便打的&#xff0c;不要乱点 首先使用 docker 搭建 Gitea 服务器&#xff0c;用于管理代码版本&#xff0c;数据库选择mysql Gitea 服务器的 docker-compose.yml 配…

Kubernetes(K8S)拉取本地镜像部署Pod 实现类似函数/微服务功能(可设置参数并实时调用)

以两数相加求和为例&#xff0c;在kubernetes集群拉取本地的镜像&#xff0c;实现如下效果&#xff1a; 1.实现两数相加求和 2.可以通过curl实时调用&#xff0c;参数以GET方式提供&#xff0c;并得到结果。&#xff08;类似调用函数&#xff09; 一、实现思路 需要准备如下的…

分布式websocket IM聊天系统相关问题问答【第九期】

前言 上期视频讲解了自己关于聊天系统的设计的时候出现了一些不一样的声音。不了解情况的可以看上上期视频。这期主要是讨论。IM聊天系统设计方案多。我的先说明一下自己的技术背景互相之间才能更好的理解。 本期对应视频 目前已经写的文章有。并且有对应视频版本。 git项目地…

FPGA中跨时钟域传数据——(1)单bit脉冲

FPGA中跨时钟域传数据——&#xff08;1&#xff09;单bit脉冲 亚稳态模型由快时钟传到慢时钟由慢时钟传到快时钟 亚稳态模型 必须在建立时间和保持时间内&#xff0c;数据不变化&#xff0c;否则会产生亚稳态。 由快时钟传到慢时钟 在快时钟里面进行数据展宽&#xff08;…

牛客周赛 Round 20 解题报告 | 珂学家 | 状压DP/矩阵幂优化 + 前缀和的前缀和

前言 整体评价 这场比赛很特别&#xff0c;是牛客周赛的第20场&#xff0c;后两题难度直线飙升了。 前四题相对简单&#xff0c;E题是道状压题&#xff0c;历来状压题都难&#xff0c;F题压轴难题了&#xff0c;感觉学到了不少。 A. 赝品 先求的最大值 然后统计非最大值的个…

位置无关码PIC详解:原理、动态链接库、代码重定位

静态链接库将代码和数据在编译时整合到可执行文件&#xff0c;使程序独立运行。动态链接库允许在程序运行时加载&#xff0c;而不是在编译时将库的代码和数据静态地合并到可执行文件中。这允许多个程序共享同一份库&#xff0c;减小程序体积。由于动态链接库在编译时并未确定其…

【Electron】Electron是什么

1. Electron是什么 Electron是使用JavaScript、HTML和CSS构建跨平台&#xff08;Windows、MacOs、Linux&#xff09;的桌面应用。Electron其实就是一个可以展示网页内容的壳子&#xff0c;相当于一个独立的浏览器&#xff0c;可以提供给你一些接口&#xff0c;去调用系统的资源…

微软 Power Apps model drven app 模型驱动应用使用Plugin插件实现业务流程跳转阶段功能

微软 Power Apps model drven app 模型驱动应用使用Plugin插件实现业务流程跳转阶段功能 模型驱动应用使用插件实现跳转业务流程阶段跳转功能 在实际操作中总会遇到使用业务流程的需求&#xff0c;那么如何使用plugin实现跳转阶段的功能呢 需求背景是主表上有业务流程&#x…