代码随想录算法训练营第29天 |* 491.递增子序列* 46.全排列* 47.全排列 II

目录

* 491.递增子序列

💡解题思路

回溯三部曲

💻实现代码

* 46.全排列

💡解题思路

# 回溯三部曲

单层搜索的逻辑

💻实现代码

* 47.全排列 II

💡解题思路

💻实现代码


* 491.递增子序列

题目链接: 491.递增子序列

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:

  • 输入: [4, 6, 7, 7]
  • 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:

  • 给定数组的长度不会超过15。
  • 数组中的整数范围是 [-100,100]。
  • 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。

💡解题思路

491. 递增子序列1

回溯三部曲

  • 递归函数参数

本题求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。

代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex)
  • 终止条件

本题其实类似求子集问题,也是要遍历树形结构找每一个节点,

可以不加终止条件,startIndex每次都会加1,并不会无限递归。

但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:

if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,因为要取树上的所有节点
}
  • 单层搜索逻辑

491. 递增子序列1

在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了

那么单层搜索代码如下:

unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();
}

对于已经习惯写回溯的同学,看到递归函数上面的uset.insert(nums[i]);,下面却没有对应的pop之类的操作,应该很不习惯吧

这也是需要注意的点,unordered_set<int> uset; 是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!

💻实现代码

class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex){if(path.size() >= 2)result.add(new ArrayList<>(path));            HashSet<Integer> hs = new HashSet<>();for(int i = startIndex; i < nums.length; i++){if(!path.isEmpty() && path.get(path.size() -1 ) > nums[i] || hs.contains(nums[i]))continue;hs.add(nums[i]);path.add(nums[i]);backTracking(nums, i + 1);path.remove(path.size() - 1);}}
}class Solution {private List<Integer> path = new ArrayList<>();private List<List<Integer>> res = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backtracking(nums,0);return res;}private void backtracking (int[] nums, int start) {if (path.size() > 1) {res.add(new ArrayList<>(path));}int[] used = new int[201];for (int i = start; i < nums.length; i++) {if (!path.isEmpty() && nums[i] < path.get(path.size() - 1) ||(used[nums[i] + 100] == 1)) continue;used[nums[i] + 100] = 1;path.add(nums[i]);backtracking(nums, i + 1);path.remove(path.size() - 1);}}
}//法二:使用map
class Solution {//结果集合List<List<Integer>> res = new ArrayList<>();//路径集合LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> findSubsequences(int[] nums) {getSubsequences(nums,0);return res;}private void getSubsequences( int[] nums, int start ) {if(path.size()>1 ){res.add( new ArrayList<>(path) );// 注意这里不要加return,要取树上的节点}HashMap<Integer,Integer> map = new HashMap<>();for(int i=start ;i < nums.length ;i++){if(!path.isEmpty() && nums[i]< path.getLast()){continue;}// 使用过了当前数字if ( map.getOrDefault( nums[i],0 ) >=1 ){continue;}map.put(nums[i],map.getOrDefault( nums[i],0 )+1);path.add( nums[i] );getSubsequences( nums,i+1 );path.removeLast();}}
}

* 46.全排列

题目链接:46.全排列

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

  • 输入: [1,2,3]
  • 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]

💡解题思路

46.全排列

# 回溯三部曲

  • 递归函数参数

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:

46.全排列

代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
  • 递归终止条件

46.全排列

可以看出叶子节点,就是收割结果的地方。

当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

代码如下:

// 此时说明找到了一组
if (path.size() == nums.size()) {result.push_back(path);return;
}

单层搜索的逻辑

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次

代码如下:

for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;
}

💻实现代码

class Solution {List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果boolean[] used;public List<List<Integer>> permute(int[] nums) {if (nums.length == 0){return result;}used = new boolean[nums.length];permuteHelper(nums);return result;}private void permuteHelper(int[] nums){if (path.size() == nums.length){result.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++){if (used[i]){continue;}used[i] = true;path.add(nums[i]);permuteHelper(nums);path.removeLast();used[i] = false;}}
}// 解法2:通过判断path中是否存在数字,排除已经选择的数字
class Solution {List<List<Integer>> result = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> permute(int[] nums) {if (nums.length == 0) return result;backtrack(nums, path);return result;}public void backtrack(int[] nums, LinkedList<Integer> path) {if (path.size() == nums.length) {result.add(new ArrayList<>(path));}for (int i =0; i < nums.length; i++) {// 如果path中已有,则跳过if (path.contains(nums[i])) {continue;} path.add(nums[i]);backtrack(nums, path);path.removeLast();}}
}

* 47.全排列 II

题目链接:47.全排列 II

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

  • 输入:nums = [1,1,2]
  • 输出: [[1,1,2], [1,2,1], [2,1,1]]

示例 2:

  • 输入:nums = [1,2,3]
  • 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

💡解题思路

去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

47.全排列II1

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

💻实现代码

class Solution {//存放结果List<List<Integer>> result = new ArrayList<>();//暂存结果List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length];Arrays.fill(used, false);Arrays.sort(nums);backTrack(nums, used);return result;}private void backTrack(int[] nums, boolean[] used) {if (path.size() == nums.length) {result.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {// used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过// used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过// 如果同⼀树层nums[i - 1]使⽤过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}//如果同⼀树⽀nums[i]没使⽤过开始处理if (used[i] == false) {used[i] = true;//标记同⼀树⽀nums[i]使⽤过,防止同一树枝重复使用path.add(nums[i]);backTrack(nums, used);path.remove(path.size() - 1);//回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复used[i] = false;//回溯}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/626772.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt 国产嵌入式操作系统实现文字转语音功能(TTS)

1.简介 本示例使用的CPU&#xff1a;rk3588。 操作系统&#xff1a;kylin V10 架构&#xff1a;aarch64 在Windows端&#xff0c;我们很容易想到使用Qt自带的类QTextToSpeech来实现文字转语音功能&#xff0c;Qt版本得在5.11.0以上才支持。但是在嵌入式平台&#xff0c;尤其…

表的增删改查CURD(一)

&#x1f3a5; 个人主页&#xff1a;Dikz12&#x1f525;个人专栏&#xff1a;MySql&#x1f4d5;格言&#xff1a;那些在暗处执拗生长的花&#xff0c;终有一日会馥郁传香欢迎大家&#x1f44d;点赞✍评论⭐收藏 目录 新增&#xff08;Create&#xff09; 全列插入 指定列…

【数据结构】二叉树-堆(函数实现)

&#x1f308;个人主页&#xff1a;秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343&#x1f525; 系列专栏&#xff1a;《数据结构》https://blog.csdn.net/qinjh_/category_12536791.html?spm1001.2014.3001.5482 ​​ 目录 头文件 函数实现 初始化 销毁 …

牛客周赛 Round 5 解题报告 | 珂学家 | 思维场

前言 剑&#xff0c;和茶一样&#xff0c;只有细细品味&#xff0c;才能理解它的风雅。 整体评价 挺难的一场比赛&#xff0c;C题差点点错科技树(想着用Dsu On Tree), D题开始上难度&#xff0c;但是只是分析其实就是一个区间求交集的脑筋急转弯&#xff0c;E题盲猜是菊花图。…

中仕公考:2024年度国考笔试分数公布,进面名单已出

2024年度考试录用公务员笔试成绩和合格分数线已经公布&#xff0c;考生们可以自行登录公务员专题网站查询成绩。 进面人员名单根据规定的面试比例&#xff0c;按照笔试成绩从高至低的顺序&#xff0c;1月14日已经公布进面名单。 没有进入面试人员名单的考生可以关注调剂&…

ZooKeeper 实战(三) SpringBoot整合Curator-开发使用篇

文章目录 ZooKeeper 实战(三) SpringBoot整合Curator-开发使用篇0. ZooKeeper客户端 1. Curator1.1. 简介1.2. 应用场景1.3. 优势1.4. 依赖说明 2. 依赖导入3. 配置类3.1. 重试策略3.2. 实现代码3.3. 总结 4. Curator中的基本API4.1. 创建节点CreateMode中的节点类型4.2. 查询节…

基于MATLAB计算无线通信覆盖(一)环境准备

一、环境 MATLAB 2022b 注&#xff1a;开始仿真前需部署地理坐标区和地理图&#xff0c;最好采用第三种&#xff0c;直接把底图数据下载到本地&#xff0c;防止连接不上网络时只能显示darkwater的底图。 可用于地理坐标区和地理图的底图如下表所示 二、下载底图并安装 工具&…

【数据结构和算法】奇偶链表

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 方法一&#xff1a;分离节点后合并 三、代码 3.1 方法一&#xff1a;分离节点后合并 四、复杂度分…

java版微信小程序商城 免 费 搭 建 java版直播商城平台规划及常见的营销模式有哪些?电商源码/小程序/三级分销

涉及平台 平台管理、商家端&#xff08;PC端、手机端&#xff09;、买家平台&#xff08;H5/公众号、小程序、APP端&#xff08;IOS/Android&#xff09;、微服务平台&#xff08;业务服务&#xff09; 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis …

经典网络 循环神经网络(一) | RNN结构解析,代码实现

文章目录 1 提出背景2 RNN2.1 RNN结构2.2 RNN代码实现2.3 代码简洁实现 1 提出背景 为什么要引入RNN呢&#xff1f; 非常简单&#xff0c;之前我们的卷积神经网络CNN&#xff0c;全连接神经网络等都是单个神经元计算 但在序列模型中&#xff0c;前一个神经元往往对后面一个神…

为什么使用 atan2(sin(z), cos(z)) 进行角度归一化?

文章目录 为什么使用 atan2(sin(z), cos(z)) 进行归一化&#xff1f;为什么归一化后的角度等于原始角度&#xff1f; atan2 方法返回 -π 到 π 之间的值&#xff0c;代表点 (x, y) 相对于正X轴的偏移角度。这个角度是逆时针测量的&#xff0c;以弧度为单位。关于 atan2 函数为…

YOLOv5姿态估计:HRnet实时检测人体关键点

前言&#xff1a; Hello大家好&#xff0c;我是Dream。 今天来学习一下利用YOLOv5进行姿态估计&#xff0c;HRnet与SimDR检测图片、视频以及摄像头中的人体关键点&#xff0c;欢迎大家一起前来探讨学习~ 本文目录&#xff1a; 一、项目准备1Pycharm中克隆github上的项目2.具体步…

【Linux实用篇】Linux软件安装 JDK Tomcat MySQL lrzsz

1. 软件安装 1.1 软件安装方式 在Linux系统中&#xff0c;安装软件的方式主要有四种&#xff0c;这四种安装方式的特点如下&#xff1a; 安装方式特点二进制发布包安装软件已经针对具体平台编译打包发布&#xff0c;只要解压&#xff0c;修改配置即可rpm安装软件已经按照red…

微信好友批量自动添加:快捷方式解密

对于一些希望扩大社交圈子或者推广业务的人来说&#xff0c;手动添加好友可能是一个耗时且繁琐的任务。 不过&#xff0c;别担心&#xff0c;今天给大家种草一个能够批量自动添加好友的微信管理工具&#xff0c;让你轻松地扩展好友列表。 首先&#xff0c;当微信在个微管理系…

Python数据分析案例31——中国A股的月份效应研究(方差分析,虚拟变量回归)

案例背景 本次案例是博主本科在行为金融学课程上做的一个小项目&#xff0c;最近看很多经管类的学生作业都很需要&#xff0c;我就用python来重新做了一遍。不弄那些复杂的机器学习模型了&#xff0c;经管类同学就用简单的统计学方法来做模型就好。 研究目的 有效市场假说是现…

VUE项目快速打包发布

VUE项目快速打包发布 首先在你的VS Code中新建一个终端 输入 npm run build 回车等运行结束之后会在你的项目中生成一个dist目录 此时再iis部署的时候把你添加的网站指定的目录指向dist即可

STM32CubeMX配置STM32G071UART+DMA收发数据(HAL库开发)

时钟配置HSI主频配置64M 配置好串口&#xff0c;选择异步模式 配置DMA TX,RX,选择循环模式。 NVIC中勾选使能中断 勾选生成独立的.c和h文件 配置好需要的开发环境并获取代码 串口重定向勾选Use Micro LIB main.c文件修改 增加头文件和串口重定向 #include <string.h&g…

spring常见漏洞(3)

CVE-2017-8046 Spring-Data-REST-RCE(CVE-2017-8046)&#xff0c;Spring Data REST对PATCH方法处理不当&#xff0c;导致攻击者能够利用JSON数据造成RCE。本质还是因为spring的SPEL解析导致的RCE 影响版本 Spring Data REST versions < 2.5.12, 2.6.7, 3.0 RC3 Spring Bo…

光学雨量监测站比传统雨量站有哪些优势

光学雨量监测站相比传统雨量站具有许多优势。首先&#xff0c;光学雨量监测站采用光学原理进行雨量监测&#xff0c;而传统雨量站则依靠传感器和机械部件进行测量。光学雨量监测站的结构相对简单&#xff0c;不需要频繁维护和校准&#xff0c;减少了运维成本和工作量。 其次&am…

【Emgu CV教程】5.1、几何变换之平移

图像的几何变换对于图像处理来说&#xff0c;也是最基础的那一档次&#xff0c;包括平移、旋转、缩放、透视变换等等&#xff0c;也就是对图像整理形状的改变&#xff0c;用到的函数都比较简单&#xff0c;理解起来也很容易。但是为了凑字数&#xff0c;还是一个函数一个函数的…