目录
* 491.递增子序列
💡解题思路
回溯三部曲
💻实现代码
* 46.全排列
💡解题思路
# 回溯三部曲
单层搜索的逻辑
💻实现代码
* 47.全排列 II
💡解题思路
💻实现代码
* 491.递增子序列
题目链接: 491.递增子序列
给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。
示例:
- 输入: [4, 6, 7, 7]
- 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]
说明:
- 给定数组的长度不会超过15。
- 数组中的整数范围是 [-100,100]。
- 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。
💡解题思路
回溯三部曲
- 递归函数参数
本题求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。
代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex)
- 终止条件
本题其实类似求子集问题,也是要遍历树形结构找每一个节点,
可以不加终止条件,startIndex每次都会加1,并不会无限递归。
但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:
if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,因为要取树上的所有节点
}
- 单层搜索逻辑
在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了
那么单层搜索代码如下:
unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();
}
对于已经习惯写回溯的同学,看到递归函数上面的uset.insert(nums[i]);
,下面却没有对应的pop之类的操作,应该很不习惯吧
这也是需要注意的点,unordered_set<int> uset;
是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!
💻实现代码
class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex){if(path.size() >= 2)result.add(new ArrayList<>(path)); HashSet<Integer> hs = new HashSet<>();for(int i = startIndex; i < nums.length; i++){if(!path.isEmpty() && path.get(path.size() -1 ) > nums[i] || hs.contains(nums[i]))continue;hs.add(nums[i]);path.add(nums[i]);backTracking(nums, i + 1);path.remove(path.size() - 1);}}
}class Solution {private List<Integer> path = new ArrayList<>();private List<List<Integer>> res = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backtracking(nums,0);return res;}private void backtracking (int[] nums, int start) {if (path.size() > 1) {res.add(new ArrayList<>(path));}int[] used = new int[201];for (int i = start; i < nums.length; i++) {if (!path.isEmpty() && nums[i] < path.get(path.size() - 1) ||(used[nums[i] + 100] == 1)) continue;used[nums[i] + 100] = 1;path.add(nums[i]);backtracking(nums, i + 1);path.remove(path.size() - 1);}}
}//法二:使用map
class Solution {//结果集合List<List<Integer>> res = new ArrayList<>();//路径集合LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> findSubsequences(int[] nums) {getSubsequences(nums,0);return res;}private void getSubsequences( int[] nums, int start ) {if(path.size()>1 ){res.add( new ArrayList<>(path) );// 注意这里不要加return,要取树上的节点}HashMap<Integer,Integer> map = new HashMap<>();for(int i=start ;i < nums.length ;i++){if(!path.isEmpty() && nums[i]< path.getLast()){continue;}// 使用过了当前数字if ( map.getOrDefault( nums[i],0 ) >=1 ){continue;}map.put(nums[i],map.getOrDefault( nums[i],0 )+1);path.add( nums[i] );getSubsequences( nums,i+1 );path.removeLast();}}
}
* 46.全排列
题目链接:46.全排列
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
- 输入: [1,2,3]
- 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]
💡解题思路
# 回溯三部曲
- 递归函数参数
首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:
代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
- 递归终止条件
可以看出叶子节点,就是收割结果的地方。
当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。
代码如下:
// 此时说明找到了一组
if (path.size() == nums.size()) {result.push_back(path);return;
}
单层搜索的逻辑
因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。
而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次。
代码如下:
for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;
}
💻实现代码
class Solution {List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果boolean[] used;public List<List<Integer>> permute(int[] nums) {if (nums.length == 0){return result;}used = new boolean[nums.length];permuteHelper(nums);return result;}private void permuteHelper(int[] nums){if (path.size() == nums.length){result.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++){if (used[i]){continue;}used[i] = true;path.add(nums[i]);permuteHelper(nums);path.removeLast();used[i] = false;}}
}// 解法2:通过判断path中是否存在数字,排除已经选择的数字
class Solution {List<List<Integer>> result = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> permute(int[] nums) {if (nums.length == 0) return result;backtrack(nums, path);return result;}public void backtrack(int[] nums, LinkedList<Integer> path) {if (path.size() == nums.length) {result.add(new ArrayList<>(path));}for (int i =0; i < nums.length; i++) {// 如果path中已有,则跳过if (path.contains(nums[i])) {continue;} path.add(nums[i]);backtrack(nums, path);path.removeLast();}}
}
* 47.全排列 II
题目链接:47.全排列 II
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
示例 1:
- 输入:nums = [1,1,2]
- 输出: [[1,1,2], [1,2,1], [2,1,1]]
示例 2:
- 输入:nums = [1,2,3]
- 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
提示:
- 1 <= nums.length <= 8
- -10 <= nums[i] <= 10
💡解题思路
去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。
图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。
一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果。
💻实现代码
class Solution {//存放结果List<List<Integer>> result = new ArrayList<>();//暂存结果List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length];Arrays.fill(used, false);Arrays.sort(nums);backTrack(nums, used);return result;}private void backTrack(int[] nums, boolean[] used) {if (path.size() == nums.length) {result.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {// used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过// used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过// 如果同⼀树层nums[i - 1]使⽤过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}//如果同⼀树⽀nums[i]没使⽤过开始处理if (used[i] == false) {used[i] = true;//标记同⼀树⽀nums[i]使⽤过,防止同一树枝重复使用path.add(nums[i]);backTrack(nums, used);path.remove(path.size() - 1);//回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复used[i] = false;//回溯}}}
}