基于Hadoop的网上购物行为大数据分析及预测系统【flask+echarts+机器学习】前后端交互

在这里插入图片描述
有需要本项目或者部署的系统可以私信博主,提供远程部署和讲解

本研究基于淘宝用户行为的开源数据展开大数据分析研究,通过Hadoop大数据分析平台对阿里天池公开的开源数据集进行多维度的用户行为分析,为电商销售提供可行性决策。

在这里插入图片描述

首先我们将大数据集上传到Hadoop中的HDFS存储,之后利用Hadoop的Flume组件,配置好自动加载数据的环境,将数据加载到hive数据库中进行大数据分析。

通过对常见的电商指标:PV、UV、跳失率、复购率等进行统计分析,按照时间维度对用户的行为、活跃度等指标进行多维度透视分析,然后对电商数据中的热销ID及热销商品类别、用户地理位置进行统计分析。将分析出来的结果表,存入到hive数据库中,然后利用sqoop组件,将hive数据库中的结果表自动导出到关系型数据库MySQL中,便于数据的存储和分析展示。

在这里插入图片描述

之后对于分析的结果数据表,采用Python的pyecharts可视化库进行前端可视化展示,通过调用MySQL中的数据集,绘制多维度的可视化图表类型,便于理解和展示。最后,结合pyecharts中page方法对这些可视化利用前后端交互的大屏可视化展示设计,并结合HTML大屏可视化进行静态数据的写入,搭建一个炫酷的可视化大屏。将这些结果通过丰富的图表展示出来可以帮助决策者可以快速做出决策。

在这里插入图片描述

为了保证数据的高效集成和展示,本研究基于flask框架开发出基于Hadoop+echarts+MySQL+机器学习的系统化产品。

Hadoop操作

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

可视化展示

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

系统页面展示

个人信息查看

在这里插入图片描述
便签记录

在这里插入图片描述
在这里插入图片描述

修改密码

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

机器学习

在这里插入图片描述

本研究的主要目的是利用淘宝用户行为的开源数据展开大数据分析研究,以提供对于电商销售的可行性决策。为此,本研究选择了阿里天池公开的开源数据集,并将其上传到Hadoop的HDFS存储中进行存储。之后,利用Hadoop的Flume组件对数据进行自动加载,将数据加载到hive数据库中进行大数据分析。

在分析的过程中,本研究首先针对常见的电商指标,如PV、UV、跳失率、复购率等进行统计分析,以了解用户行为的基本情况。然后,按照时间维度对用户的行为、活跃度等指标进行多维度透视分析,进一步了解用户行为的变化趋势和规律。此外,本研究还对电商数据中的热销ID及热销商品类别、用户地理位置等因素进行统计分析,以了解用户购买行为的特点和偏好。

为了便于数据的存储和分析展示,本研究将分析出来的结果表存入到hive数据库中,并利用sqoop组件将其自动导出到关系型数据库MySQL中。在此基础上,本研究采用Python的pyecharts可视化库进行前端可视化展示,通过调用MySQL中的数据集,绘制多维度的可视化图表类型,便于理解和展示。最后,结合pyecharts中page方法对这些可视化利用前后端交互的大屏可视化展示设计,并结合HTML大屏可视化进行静态数据的写入,搭建一个炫酷的可视化大屏。这些结果通过丰富的图表展示出来可以帮助决策者可以快速做出决策。

综上所述,本研究的总体研究路线可以概括为:首先,对于淘宝用户行为的开源数据进行大数据分析,包括基本指标、多维度透视分析以及用户购买行为的特点和偏好。然后,将分析结果存储到hive数据库中,并导出到MySQL数据库,便于数据的存储和分析展示。最后,采用Python的pyecharts可视化库进行前端可视化展示,通过调用MySQL中的数据集,绘制多维度的可视化图表类型,搭建一个炫酷的可视化大屏,以便于理解和展示分析结果,帮助决策者快速做出决策。

本研究的研究路线的详细描述如下:

(1)数据准备和存储
本研究选择了阿里天池公开的淘宝用户行为开源数据集作为研究对象。首先将数据集上传到Hadoop的HDFS存储中,并利用Hadoop的Flume组件配置好自动加载数据的环境,将数据加载到hive数据库中进行大数据分析。

(2)数据分析和统计
本研究采用多维度的数据分析方法,针对常见的电商指标,如PV、UV、跳失率、复购率等进行统计分析。同时,按照时间维度对用户的行为、活跃度等指标进行多维度透视分析,了解用户行为的变化趋势和规律。此外,还对电商数据中的热销ID及热销商品类别、用户地理位置等因素进行统计分析,以了解用户购买行为的特点和偏好。

(3)数据存储和可视化展示
为了便于数据的存储和分析展示,本研究将分析出来的结果表存入到hive数据库中,并利用sqoop组件将其自动导出到关系型数据库MySQL中。在此基础上,本研究采用Python的pyecharts可视化库进行前端可视化展示,通过调用MySQL中的数据集,绘制多维度的可视化图表类型。结合pyecharts中page方法对这些可视化进行前后端交互的大屏可视化展示设计,并结合HTML大屏可视化进行静态数据的写入,搭建一个炫酷的可视化大屏。这些结果通过丰富的图表展示出来可以帮助决策者可以快速做出决策。

(4)结果分析和决策制定
最后,本研究将分析结果进行汇总和分析,形成对于电商销售的可行性决策。根据分析结果,决策者可以了解用户行为的特点和偏好,针对性地制定营销策略和推广方案,以提高销售效果和客户满意度。

综上所述,本研究采用淘宝用户行为的开源数据进行大数据分析研究,通过Hadoop大数据分析平台进行多维度的用户行为分析,最终形成对于电商销售的可行性决策。这个研究路线结合了大数据存储和处理技术、数据分析和统计方法以及数据可视化展示技术,为电商销售提供了一个有力的支持。

总结

研究首先利用Hadoop的HDFS存储系统存储数据,然后通过Flume组件自动加载数据到Hive数据库中进行分析。研究重点关注了电子商务关键指标,如PV、UV、跳失率、重复购买率等,并进行多维度透视分析以洞察用户行为和活跃度。

此外,研究还详细分析了热销商品ID、商品类别和用户地理位置,以探索不同产品类别的销售业绩和电子商务指标。分析结果存储于Hive数据库后,通过Sqoop组件导出到MySQL,然后使用Python的Pyecharts可视化库进行结果展示。这包括创建一个前后端交互的大屏可视化展示,结合HTML技术展现静态数据。

此外,研究还利用了大数据分析和机器学习算法,如随机森林、XGBoost和MLP(BP神经网络),构建了一个用于预测在线购物行为的模型。通过解决数据不均衡问题,该模型在预测用户购买行为方面取得了高达99%的准确率,展现出卓越的预测能力。总之,本研究为各种产品的在线销售提供了全面的决策支持,突显了大数据分析在电子商务领域的巨大潜力。"

每文一语

学习不断的才能适应新的环境

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/617515.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何配置Kafka账号密码

背景 我们需要与第三方系统进行数据同步,需要搭建公网Kafka,Kafka默认是没有用户密码校验的,所以我们需要配置用户名密码校验。 配置 新增JAAS配置文件 在conf目录下新增kafka_server_jaas.conf文件,文件内容如下:…

python统计分析——小提琴图(sns.violinplot)

参考资料:用python动手学统计学,帮助文档 使用seaborn.violinplot()函数绘制箱线图 sns.violinplot()的做出来的小提琴图比plt.violinplot()更像小提琴。 import numpy as np import pandas as pd from matplotlib import pyplot as plt import seabo…

Spark的内核调度

目录 概述 RDD的依赖 DAG和Stage DAG执行流程图形成和Stage划分 Stage内部流程 Spark Shuffle Spark中shuffle的发展历程 优化前的Hash shuffle 经过优化后的Hash shuffle Sort shuffle Sort shuffle的普通机制 Job调度流程 Spark RDD并行度 概述 Spark内核调度任务: 1…

强化学习应用(四):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…

jetson orin nano 使用yolov8导出engine

1. 导出onnx 经过前面训练,得到了best.pt模型,现在想要使用tensorrt进行推理,需要先导出为onnx格式,再转化为engine格式。 yolo export modelbest.pt formatonnx opset12 simplifyTrue2.解决错误 在导出过程中,可能…

Android代码混淆

Android之代码混淆 代码混淆的作用设置混淆1. 在模块目录下的 build.gradle 文件中配置以下代码2. 在 proguard-rules.pro 文件中添加混淆规则 通用混淆规则常用匹配符常用命令注意事项如何查看是否已混淆 代码混淆的作用 1.令 APK 难以被逆向工程,即很大程度上增加…

开源项目CuteSqlite开发笔记(七):CuteSqlite释放BETA版本啦

经过大半年的开发,CuteSqlite程序代码不知不觉来到了6万行,有效行数4万行,CuteSqlite开发完成了一个小版本,进入下一个阶段,并于2024元旦释放BETA版本,有兴趣的朋友可以下载试用。 GitHub下载https://gith…

Handsfree_ros_imu:ROS机器人IMU模块的get_imu_rpy.py文件学习记录

上一篇博客写了关于Handsfree_ros_imu:ROS机器人IMU模块ARHS姿态传感器(A9)Liunx系统Ubuntu20.04学习启动和运行教程: https://blog.csdn.net/qq_54900679/article/details/135539176?spm1001.2014.3001.5502 这次带来get_imu_r…

池化、线性、激活函数层

一、池化层 池化运算是深度学习中常用的一种操作,它可以对输入的特征图进行降采样,从而减少特征图的尺寸和参数数量。 池化运算的主要目的是通过“收集”和“总结”输入特征图的信息来提取出主要特征,并且减少对细节的敏感性。在池化运算中…

ElasticSearch 学习9 spring-boot ,elasticsearch7.16.1实现中文拼音分词搜索

一、elasticsearch官网下载:Elasticsearch 7.16.1 | Elastic 二、拼音、ik、繁简体转换插件安装 ik分词:GitHub - medcl/elasticsearch-analysis-ik: The IK Analysis plugin integrates Lucene IK analyzer into elasticsearch, support customized d…

高质量训练数据助力大语言模型摆脱数据困境 | 景联文科技

目前,大语言模型的发展已经取得了显著的成果,如OpenAI的GPT系列模型、谷歌的BERT模型、百度的文心一言模型等。这些模型在文本生成、问答系统、对话生成、情感分析、摘要生成等方面都表现出了强大的能力,为自然语言处理领域带来了新的突破。 …

ROS2——launcher

在ROS2中,launcher 文件是通过Python构建的,它们的功能是声明用哪些选项或参数来执行哪些程序,可以通过 launcher 文件快速同时启动多个节点。一个 launcher 文件内可以引用另一个 launcher 文件。 使用 launcher 文件 ros2 launch 可以代替…

掌握 Vue 响应式系统,让数据驱动视图(上)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

GitLab任意用户密码重置漏洞(CVE-2023-7028)

GitLab CVE-2023-7028 POC user[email][]validemail.com&user[email][]attackeremail.com 本文链接: https://www.黑客.wang/wen/47.html

Webhook端口中的自定义签名身份认证

概述 如果需要通过 Webhook 端口从交易伙伴处接收数据,但该交易伙伴可能对于安全性有着较高的要求,而不仅仅是用于验证入站 Webhook 要求的基本身份验证用户名/密码,或者用户可能只想在入站 Webhook 消息上增加额外的安全层。 使用 Webhook…

【数据采集与预处理】流数据采集工具Flume

目录 一、Flume简介 (一)Flume定义 (二)Flume作用 二、Flume组成架构 三、Flume安装配置 (一)下载Flume (二)解压安装包 (三)配置环境变量 &#xf…

环形链表[简单]

优质博文:IT-BLOG-CN 一、题目 给你一个链表的头节点head,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪next指针再次到达,则链表中存在环。为了表示给定链表中的环,评测系统内部使用整数pos来表示链…

数据结构中的一棵树

一、树是什么? 有根有枝叶便是树!根只有一个,枝叶可以有,也可以没有,可以有一个,也可以有很多。 就像这样: 嗯,应该是这样: 二、一些概念 1、高度 树有多高&#x…

MySQL之导入导出远程备份(详细讲解)

文章目录 一、Navicat导入导出二、mysqldump命令导入导出2.1导出2.2导入(使用mysqldump导入 包含t_log表的整个数据库) 三、LOAD DATA INFILE命令导入导出3.1设置;3.2导出3.3导入(使用单表数据导入load data infile的方式) 四、远程备份4.1导出4.2导入 一…

redis系列:01 数据类型及操作

redis的数据类型有哪些 string,list,set,sorted_set,hash 操作 sting: set name maliao get name exists name expire name 5 ttl name del name setex name 10 maliao 设置key和过期时间 setnx name maliao 当key不存在时才添加list: lpush letter a lpush le…