[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(1) 质量刚体的在坐标系下运动

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。

2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
黎 旭,陈 强 洪,甄 文 强 等.惯 性 张 量 平 移 和 旋 转 复 合 变 换 的 一 般 形 式 及 其 应 用[J].工 程 数 学 学 报,2022,39(06):1005-1011.

食用方法
质量点的动量与角动量
刚体的动量与角动量——力与力矩的关系
惯性矩阵的表达与推导——在刚体运动过程中的作用
惯性矩阵在不同坐标系下的表达
务必自己推导全部公式,并理解每个符号的含义

机构运动学与动力学分析与建模 Ch00-2质量刚体的在坐标系下运动Part1


2. 质量刚体的在坐标系下运动

2.1 质量点 Mass Partical 的状态

对于质量点而言,其自身在笛卡尔坐标系中的状态仅包括运动状态。由热力学所引起自身的温度变化状态,由此产生的体积变化状态,或者自身亮度的状态变化等,都认为不会对运动状态产生干扰,即将某一空间实体等效为质量点,此时的笛卡尔坐标系所表示的状态空间就是三维空间。

由此,将质量点运动状态的改变视为力对质量点的作用:
F ⃗ P F = d p ⃗ P F d t = d ( m V ⃗ P F ) d t = d m d t ↗ 0 V ⃗ P F + d V ⃗ P F d t m = m a ⃗ P F \vec{F}_{\mathrm{P}}^{F}=\frac{\mathrm{d}\vec{p}_{\mathrm{P}}^{F}}{\mathrm{dt}}=\frac{\mathrm{d}\left( m\vec{V}_{\mathrm{P}}^{F} \right)}{\mathrm{dt}}=\frac{\mathrm{d}m}{\mathrm{dt}}_{\nearrow 0}\vec{V}_{\mathrm{P}}^{F}+\frac{\mathrm{d}\vec{V}_{\mathrm{P}}^{F}}{\mathrm{dt}}m=m\vec{a}_{\mathrm{P}}^{F} F PF=dtdp PF=dtd(mV PF)=dtdm0V PF+dtdV PFm=ma PF
τ ⃗ P F = d h ⃗ P F d t = d ( m ⋅ R ⃗ P F × V ⃗ P F ) d t = d ( R ⃗ P F × V ⃗ P F ) d t m = [ ( d R ⃗ P F d t × V ⃗ P F ) ↗ 0 + R ⃗ P F × d V ⃗ P F d t ] m = R ⃗ P F × F ⃗ P F = R ⃗ P F × d p ⃗ P F d t \begin{split} \vec{\tau}_{\mathrm{P}}^{F}&=\frac{\mathrm{d}\vec{h}_{\mathrm{P}}^{F}}{\mathrm{dt}}=\frac{\mathrm{d}\left( m\cdot \vec{R}_{\mathrm{P}}^{F}\times \vec{V}_{\mathrm{P}}^{F} \right)}{\mathrm{dt}}=\frac{\mathrm{d}\left( \vec{R}_{\mathrm{P}}^{F}\times \vec{V}_{\mathrm{P}}^{F} \right)}{\mathrm{dt}}m \\ &=\left[ \left( \frac{\mathrm{d}\vec{R}_{\mathrm{P}}^{F}}{\mathrm{dt}}\times \vec{V}_{\mathrm{P}}^{F} \right) _{\nearrow 0}+\vec{R}_{\mathrm{P}}^{F}\times \frac{\mathrm{d}\vec{V}_{\mathrm{P}}^{F}}{\mathrm{dt}} \right] m=\vec{R}_{\mathrm{P}}^{F}\times \vec{F}_{\mathrm{P}}^{F}=\vec{R}_{\mathrm{P}}^{F}\times \frac{\mathrm{d}\vec{p}_{\mathrm{P}}^{F}}{\mathrm{dt}} \end{split} τ PF=dtdh PF=dtd(mR PF×V PF)=dtd(R PF×V PF)m= (dtdR PF×V PF)0+R PF×dtdV PF m=R PF×F PF=R PF×dtdp PF

如果说动量是表述物体运动状态的量,那么角动量就是描述物体旋转状态的量;如果说力是改变物体运动状态的量,那么扭矩就是改变物体旋转状态的量。

认为质量点的质量不发生改变:

  • 质量点的动量Linear Momentum p ⃗ P F \vec{p}_{\mathrm{P}}^{F} p PF——点 P P P 在固定坐标系 { F } \left\{ F \right\} {F}下的动量参数 p ⃗ P F = m V ⃗ P F \vec{p}_{\mathrm{P}}^{F}=m\vec{V}_{\mathrm{P}}^{F} p PF=mV PF
  • 质量点的角动量Angular Momentum h ⃗ P / O F \vec{h}_{\mathrm{P}/\mathrm{O}}^{F} h P/OF——点 P P P 在固定坐标系 { F } \left\{ F \right\} {F}下,相对于点 O O O角动量参数(又可称为动量矩
    h ⃗ P / O F = R ⃗ O P F × p ⃗ P F = R ⃗ O P F × ( m V ⃗ P F ) = m ⋅ ( R ⃗ P F − R ⃗ O F ) × V ⃗ P F = h ⃗ P F − m ⋅ R ⃗ O F × V ⃗ P F \vec{h}_{\mathrm{P}/\mathrm{O}}^{F}=\vec{R}_{\mathrm{OP}}^{F}\times \vec{p}_{\mathrm{P}}^{F}=\vec{R}_{\mathrm{OP}}^{F}\times \left( m\vec{V}_{\mathrm{P}}^{F} \right) =m\cdot \left( \vec{R}_{\mathrm{P}}^{F}-\vec{R}_{\mathrm{O}}^{F} \right) \times \vec{V}_{\mathrm{P}}^{F}=\vec{h}_{\mathrm{P}}^{F}-m\cdot \vec{R}_{\mathrm{O}}^{F}\times \vec{V}_{\mathrm{P}}^{F} h P/OF=R OPF×p PF=R OPF×(mV PF)=m(R PFR OF)×V PF=h PFmR OF×V PF

在这里插入图片描述
其中,动量的计算是依据固定坐标系进行描述的,而角动量通常与所选择的运动坐标系有关。令 O O O 为固定坐标系中任意一参考点,此时以点 O O O 计算点 P P P 的扭矩 τ ⃗ P / O F \vec{\tau}_{\mathrm{P}/\mathrm{O}}^{F} τ P/OF为:
τ ⃗ P / O F = R ⃗ O P F × F ⃗ P F = R ⃗ O P F × d p ⃗ P F d t = d ( R ⃗ O P F × p ⃗ P F ) d t − d ( R ⃗ O P F ) d t × p ⃗ P F = d ( R ⃗ O P F × p ⃗ P F ) d t − d ( R ⃗ P F − R ⃗ O F ) d t × p ⃗ P F = d h ⃗ P / O F d t + V ⃗ O F × p ⃗ P F \begin{split} \vec{\tau}_{\mathrm{P}/\mathrm{O}}^{F}&=\vec{R}_{\mathrm{OP}}^{F}\times \vec{F}_{\mathrm{P}}^{F}=\vec{R}_{\mathrm{OP}}^{F}\times \frac{\mathrm{d}\vec{p}_{\mathrm{P}}^{F}}{\mathrm{dt}}=\frac{\mathrm{d}\left( \vec{R}_{\mathrm{OP}}^{F}\times \vec{p}_{\mathrm{P}}^{F} \right)}{\mathrm{dt}}-\frac{\mathrm{d}\left( \vec{R}_{\mathrm{OP}}^{F} \right)}{\mathrm{dt}}\times \vec{p}_{\mathrm{P}}^{F} \\ &=\frac{\mathrm{d}\left( \vec{R}_{\mathrm{OP}}^{F}\times \vec{p}_{\mathrm{P}}^{F} \right)}{\mathrm{dt}}-\frac{\mathrm{d}\left( \vec{R}_{\mathrm{P}}^{F}-\vec{R}_{\mathrm{O}}^{F} \right)}{\mathrm{dt}}\times \vec{p}_{\mathrm{P}}^{F}=\frac{\mathrm{d}\vec{h}_{\mathrm{P}/\mathrm{O}}^{F}}{\mathrm{dt}}+\vec{V}_{\mathrm{O}}^{F}\times \vec{p}_{\mathrm{P}}^{F} \end{split} τ P/OF=R OPF×F PF=R OPF×dtdp PF=dtd(R OPF×p PF)dtd(R OPF)×p PF=dtd(R OPF×p PF)dtd(R PFR OF)×p PF=dtdh P/OF+V OF×p PF

由上式可知,当 V ⃗ O F ∥ V ⃗ P F \vec{V}_{\mathrm{O}}^{F} \parallel \vec{V}_{\mathrm{P}}^{F} V OFV PF(特别是 O O O P P P为同一点)时,或 V ⃗ O F = 0 \vec{V}_{\mathrm{O}}^{F}=0 V OF=0(相当于坐标系下一定点)时,有: τ ⃗ P O = d h ⃗ P O d t \vec{\tau}_{\mathrm{P}}^{O}=\frac{\mathrm{d}\vec{h}_{\mathrm{P}}^{O}}{\mathrm{dt}} τ PO=dtdh PO

此时,已知: R ⃗ O P F × d ( m V ⃗ P F ) d t = R ⃗ O P F × F ⃗ P F \vec{R}_{\mathrm{OP}}^{F}\times \frac{\mathrm{d}\left( m\vec{V}_{\mathrm{P}}^{F} \right)}{\mathrm{d}t}=\vec{R}_{\mathrm{OP}}^{F}\times \vec{F}_{\mathrm{P}}^{F} R OPF×dtd(mV PF)=R OPF×F PF,对 h ⃗ P / O F \vec{h}_{\mathrm{P}/\mathrm{O}}^{F} h P/OF求导,则有:
d h ⃗ P / O F d t = d R ⃗ O P F d t × p ⃗ P F + R ⃗ O P F × d p ⃗ P F d t = m ⋅ d R ⃗ O P F d t × V ⃗ P F + m ⋅ R ⃗ O P F × d V ⃗ P F d t = m ⋅ d ( R ⃗ P F − R ⃗ O F ) d t × V ⃗ P F + m ⋅ R ⃗ O P F × d V ⃗ P F d t = m ⋅ d ( R ⃗ P F − R ⃗ O F ) d t × V ⃗ P F + R ⃗ O P F × F ⃗ P F \begin{split} \frac{\mathrm{d}\vec{h}_{\mathrm{P}/\mathrm{O}}^{F}}{\mathrm{d}t}&=\frac{\mathrm{d}\vec{R}_{\mathrm{OP}}^{F}}{\mathrm{d}t}\times \vec{p}_{\mathrm{P}}^{F}+\vec{R}_{\mathrm{OP}}^{F}\times \frac{\mathrm{d}\vec{p}_{\mathrm{P}}^{F}}{\mathrm{d}t}=m\cdot \frac{\mathrm{d}\vec{R}_{\mathrm{OP}}^{F}}{\mathrm{d}t}\times \vec{V}_{\mathrm{P}}^{F}+m\cdot \vec{R}_{\mathrm{OP}}^{F}\times \frac{\mathrm{d}\vec{V}_{\mathrm{P}}^{F}}{\mathrm{d}t} \\ &=m\cdot \frac{\mathrm{d}\left( \vec{R}_{\mathrm{P}}^{F}-\vec{R}_{\mathrm{O}}^{F} \right)}{\mathrm{d}t}\times \vec{V}_{\mathrm{P}}^{F}+m\cdot \vec{R}_{\mathrm{OP}}^{F}\times \frac{\mathrm{d}\vec{V}_{\mathrm{P}}^{F}}{\mathrm{d}t} \\ &=m\cdot \frac{\mathrm{d}\left( \vec{R}_{\mathrm{P}}^{F}-\vec{R}_{\mathrm{O}}^{F} \right)}{\mathrm{d}t}\times \vec{V}_{\mathrm{P}}^{F}+\vec{R}_{\mathrm{OP}}^{F}\times \vec{F}_{\mathrm{P}}^{F} \end{split} dtdh P/OF=dtdR OPF×p PF+R OPF×dtdp PF=mdtdR OPF×V PF+mR OPF×dtdV PF=mdtd(R PFR OF)×V PF+mR OPF×dtdV PF=mdtd(R PFR OF)×V PF+R OPF×F PF

可见,同上所述:当 V ⃗ O F = 0 \vec{V}_{\mathrm{O}}^{F}=0 V OF=0时,即 d h ⃗ P / O F d t = m ⋅ ( V ⃗ P F − V ⃗ O F ↗ 0 ) × V ⃗ P F + R ⃗ O P F × F ⃗ P F = R ⃗ O P F × F ⃗ P F \frac{\mathrm{d}\vec{h}_{\mathrm{P}/\mathrm{O}}^{F}}{\mathrm{d}t}=m\cdot \left( \vec{V}_{\mathrm{P}}^{F}-{\vec{V}_{\mathrm{O}}^{F}}_{\nearrow 0} \right) \times \vec{V}_{\mathrm{P}}^{F}+\vec{R}_{\mathrm{OP}}^{F}\times \vec{F}_{\mathrm{P}}^{F}=\vec{R}_{\mathrm{OP}}^{F}\times \vec{F}_{\mathrm{P}}^{F} dtdh P/OF=m(V PFV OF0)×V PF+R OPF×F PF=R OPF×F PF;当 V ⃗ O F ∥ V ⃗ P F \vec{V}_{\mathrm{O}}^{F} \parallel \vec{V}_{\mathrm{P}}^{F} V OFV PF时,即 d h ⃗ P / O F d t = ( m ⋅ ( V ⃗ P F − V ⃗ O F ) × V ⃗ P F ) ↗ 0 + R ⃗ O P F × F ⃗ P F = R ⃗ O P F × F ⃗ P F \frac{\mathrm{d}\vec{h}_{\mathrm{P}/\mathrm{O}}^{F}}{\mathrm{d}t}=\left( m\cdot \left( \vec{V}_{\mathrm{P}}^{F}-\vec{V}_{\mathrm{O}}^{F} \right) \times \vec{V}_{\mathrm{P}}^{F} \right) _{\nearrow 0}+\vec{R}_{\mathrm{OP}}^{F}\times \vec{F}_{\mathrm{P}}^{F}=\vec{R}_{\mathrm{OP}}^{F}\times \vec{F}_{\mathrm{P}}^{F} dtdh P/OF=(m(V PFV OF)×V PF)0+R OPF×F PF=R OPF×F PF

因此,对于质点对某定点的动量矩对时间的一阶导数,等于作用力对该定点的矩,即为质点的动量矩定理:
d h ⃗ P / O F i x e d F d t = R ⃗ O F i x e d P F × F ⃗ P F \frac{\mathrm{d}\vec{h}_{\mathrm{P}/\mathrm{O}_{\mathrm{Fixed}}}^{F}}{\mathrm{d}t}=\vec{R}_{\mathrm{O}_{\mathrm{Fixed}}\mathrm{P}}^{F}\times \vec{F}_{\mathrm{P}}^{F} dtdh P/OFixedF=R OFixedPF×F PF

例子1:球杆模型
在这里插入图片描述
V ⃗ P F = r ˙ X ⃗ r + r θ ˙ X ⃗ θ a ⃗ P F = ( r ¨ − r θ ˙ 2 ) X ⃗ r + ( 2 r ˙ θ ˙ ) X ⃗ θ \begin{split} \vec{V}_{\mathrm{P}}^{F}&=\dot{r}\vec{X}_{\mathrm{r}}+r\dot{\theta}\vec{X}_{\mathrm{\theta}} \\ \vec{a}_{\mathrm{P}}^{F}&=\left( \ddot{r}-r\dot{\theta}^2 \right) \vec{X}_{\mathrm{r}}+\left( 2\dot{r}\dot{\theta} \right) \vec{X}_{\mathrm{\theta}} \end{split} V PFa PF=r˙X r+rθ˙X θ=(r¨rθ˙2)X r+(2r˙θ˙)X θ
h ⃗ P F = R ⃗ P F × p ⃗ P F = r X ⃗ r × ( r ˙ X ⃗ r + r θ ˙ X ⃗ θ ) ⋅ m = m r 2 θ ˙ K ^ τ ⃗ P F = d h ⃗ P F d t = 2 m r ˙ θ ˙ K ^ = R ⃗ P F × F ⃗ P F = ( r X ⃗ r ) × ( ( r ¨ − r θ ˙ 2 ) X ⃗ r + ( 2 r ˙ θ ˙ ) X ⃗ θ ) ⋅ m = R ⃗ P F × ( 2 r ˙ θ ˙ ) X ⃗ θ ⋅ m \begin{split} \vec{h}_{\mathrm{P}}^{F}&=\vec{R}_{\mathrm{P}}^{F}\times \vec{p}_{\mathrm{P}}^{F}=r\vec{X}_{\mathrm{r}}\times \left( \dot{r}\vec{X}_{\mathrm{r}}+r\dot{\theta}\vec{X}_{\mathrm{\theta}} \right) \cdot m=mr^2\dot{\theta}\hat{K} \\ \vec{\tau}_{\mathrm{P}}^{F}&=\frac{\mathrm{d}\vec{h}_{\mathrm{P}}^{F}}{\mathrm{dt}}=2m\dot{r}\dot{\theta}\hat{K}=\vec{R}_{\mathrm{P}}^{F}\times \vec{F}_{\mathrm{P}}^{F}=\left( r\vec{X}_{\mathrm{r}} \right) \times \left( \left( \ddot{r}-r\dot{\theta}^2 \right) \vec{X}_{\mathrm{r}}+\left( 2\dot{r}\dot{\theta} \right) \vec{X}_{\mathrm{\theta}} \right) \cdot m \\ &=\vec{R}_{\mathrm{P}}^{F}\times \left( 2\dot{r}\dot{\theta} \right) \vec{X}_{\mathrm{\theta}}\cdot m \end{split} h PFτ PF=R PF×p PF=rX r×(r˙X r+rθ˙X θ)m=mr2θ˙K^=dtdh PF=2mr˙θ˙K^=R PF×F PF=(rX r)×((r¨rθ˙2)X r+(2r˙θ˙)X θ)m=R PF×(2r˙θ˙)X θm
从受力分析的角度来看,小球仅受到了垂直于杆方向的支撑力作用,而在沿杆方向并没有力的作用,但根据小球的加速度方程(\ref{eq:ballrank1})可知,小球具有沿杆方向的运动。前者的描述是基于固定坐标系进行分析,而后者的描述是基于运动坐标系进行的分析,因此两者本质上没有矛盾关系。所谓的科氏加速度与向心力都是在运动坐标系下描述时,由于运动标架的不同,所产生的虚拟力,在实际的固定坐标系中也不参与功的作用。

2.2 运动刚体的状态

在这里插入图片描述
对于运动刚体 Σ M \varSigma _{\mathrm{M}} ΣM而言,需要将其上任意一点 P i P_{\mathrm{i}} Pi在固定坐标系 { F : ( I ^ , J ^ , K ^ ) } \left\{ F:\left( \hat{I},\hat{J},\hat{K} \right) \right\} {F:(I^,J^,K^)}下进行表述。而对于有质量的刚体而言,其最特殊的点就是其等效的质量中心,称为其为质心点 G G G C o M CoM CoM(center of mass)。

2.2.1 刚体的质心Center of Mass——点 G G G或点 C o M CoM CoM

m t o t a l ⋅ R ⃗ G F = ∑ m i ⋅ R ⃗ P i F m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}=\sum{m_{\mathrm{i}}\cdot \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}} mtotalR GF=miR PiF
对于刚体Rigid Body而言,其可视为 N N N 个质量点的集合,并具有有限体积,且各质量点之间的距离为定值,即:
∥ r ⃗ i − r ⃗ j ∥ = C i j i , j ∈ { 1 , ⋯ , N } \left\| \vec{r}_{\mathrm{i}}-\vec{r}_{\mathrm{j}} \right\| =C_{\mathrm{ij}}\,\, i,j\in \left\{ 1,\cdots ,N \right\} r ir j=Ciji,j{1,,N}
其中, r ⃗ i ∈ R 3 \vec{r}_{\mathrm{i}}\in \mathbb{R} ^3 r iR3为位置参数, C i j ∈ R C_{\mathrm{ij}}\in \mathbb{R} CijR为距离参数。

刚体在现实中并不存在,只是一种近似,且有: ω F l e x ≫ ω R B = 0 \omega _{\mathrm{Flex}}\gg \omega _{\mathrm{RB}}=0 ωFlexωRB=0。刚体的自然频率Nature Frequency为0,柔性体Flexible Body的自然频率远大于刚体的自然频率。

质量点在空间坐标系中只需要对位置Position进行表征Configurate,而刚体还需要对其姿态Pose进行描述

考虑质量点的动量与角动量方程,首先考虑运动刚体的角动量与动量方程:
{ P ⃗ G F = m t o t a l V ⃗ G F H ⃗ Σ M / O F = ∑ i N R ⃗ O P i F × P ⃗ P i F = ∑ i N h ⃗ P i / O F \begin{cases} \vec{P}_{\mathrm{G}}^{F}=m_{\mathrm{total}}\vec{V}_{\mathrm{G}}^{F}\\ \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}=\sum_i^N{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \vec{P}_{\mathrm{P}_{\mathrm{i}}}^{F}}=\sum_i^N{\vec{h}_{\mathrm{P}_{\mathrm{i}}/\mathrm{O}}^{F}}\\ \end{cases} {P GF=mtotalV GFH ΣM/OF=iNR OPiF×P PiF=iNh Pi/OF

2.2.2 刚体的动量矩定理 theorem of moment of momentum

对于运动刚体上一微元点 P i \mathrm{P}_{\mathrm{i}} Pi进行力矩分析,则有:
H ⃗ Σ M / O F = ∑ i N h ⃗ P i / O F = ∫ h ⃗ P i / O F = ∫ R ⃗ O P i F × ( d m i ⋅ d R ⃗ P i F d t ) ⇒ d H ⃗ Σ M / O F d t = d ( ∫ R ⃗ O P i F × ( d m i ⋅ d R ⃗ P i F d t ) ) d t = ∫ ( R ⃗ O P i F × ( d m i ⋅ a ⃗ P i F ) ) + ∫ ( ( V ⃗ P i F − V ⃗ O F ) × ( d m i ⋅ V ⃗ P i F ) ) = ∫ ( R ⃗ O P i F × F ⃗ P i F ) − ∫ ( V ⃗ O F × ( d m i ⋅ V ⃗ P i F ) ) = M ⃗ Σ M / O F − V ⃗ O F × P ⃗ Σ M F \begin{split} &\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}=\sum_i^N{\vec{h}_{\mathrm{P}_{\mathrm{i}}/\mathrm{O}}^{F}}=\int{\vec{h}_{\mathrm{P}_{\mathrm{i}}/\mathrm{O}}^{F}}=\int{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \mathrm{d}m_i\cdot \frac{\mathrm{d}\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}}{\mathrm{d}t} \right)} \\ \Rightarrow \frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}}{\mathrm{d}t}&=\frac{\mathrm{d}\left( \int{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \mathrm{d}m_i\cdot \frac{\mathrm{d}\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}}{\mathrm{d}t} \right)} \right)}{\mathrm{d}t}=\int{\left( \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \mathrm{d}m_i\cdot \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) \right)}+\int{\left( \left( \vec{V}_{\mathrm{P}_{\mathrm{i}}}^{F}-\vec{V}_{\mathrm{O}}^{F} \right) \times \left( \mathrm{d}m_i\cdot \vec{V}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) \right)} \\ &=\int{\left( \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \vec{F}_{\mathrm{P}_{\mathrm{i}}}^{F} \right)}-\int{\left( \vec{V}_{\mathrm{O}}^{F}\times \left( \mathrm{d}m_i\cdot \vec{V}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) \right)}=\vec{M}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}-\vec{V}_{\mathrm{O}}^{F}\times \vec{P}_{\Sigma _{\mathrm{M}}}^{F} \end{split} dtdH ΣM/OFH ΣM/OF=iNh Pi/OF=h Pi/OF=R OPiF×(dmidtdR PiF)=dtd(R OPiF×(dmidtdR PiF))=(R OPiF×(dmia PiF))+((V PiFV OF)×(dmiV PiF))=(R OPiF×F PiF)(V OF×(dmiV PiF))=M ΣM/OFV OF×P ΣMF

若参考点 O O O为固定坐标系下一固定点,则上式简化为:
d H ⃗ Σ M / O F i x e d F d t = M ⃗ Σ M / O F i x e d F \frac{\mathrm{d}\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}_{\mathrm{Fixed}}}^{F}}{\mathrm{d}t}=\vec{M}_{\Sigma _{\mathrm{M}}/\mathrm{O}_{\mathrm{Fixed}}}^{F} dtdH ΣM/OFixedF=M ΣM/OFixedF

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/612380.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文阅读】Deep Graph Infomax

目录 0、基本信息1、研究动机2、创新点2.1、核心思想:2.2、思想推导: 3、准备3.1、符号3.2、互信息3.3、JS散度3.4、Deep InfoMax方法3.5、判别器:f-GAN估计散度 4、具体实现4.1、局部-全局互信息最大化4.2、理论动机 5、实验设置5.1、直推式…

C# 使用Fleck创建WebSocket服务器

目录 写在前面 代码实现 服务端代码 客户端代码 调用示例 写在前面 Fleck 是 C# 实现的 WebSocket 服务器,通过 WebSocket API,浏览器和服务器只需要做一个握手的动作,然后浏览器和服务器之间就形成了一条快速通道;两者之间…

1.5 Unity中的数据存储 PlayerPrefs

Unity中的三种数据存储:数据存储也称为数据持久化 一、PlayerPrefs PlayerPrefs是Unity引擎自身提供的一个用于本地持久化保存与读取的类,以键值对的形式将数据保存在文件中,然后程序可以根据关键字提取数值。 PlayerPrefs类支持3种数据类…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《计及储能参与的电能-调频-备用市场日前联合交易决策模型》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 这个标题涉及到电能、调频和备用市场的联合交易决策模型,并特别考虑了储能在其中的参与。 电能市场: 这是指电能的买卖市场&…

Java使用IText生产PDF时,中文标点符号出现在行首的问题处理

Java使用IText生成PDF时,中文标点符号出现在行首的问题处理 使用itext 5进行html转成pdf时,标点符号出现在某一行的开头 但这种情况下显然不符合中文书写的规则,主要问题出在itext中的DefaultSplitCharacter类,该方法主要用来判断…

04- OpenCV:Mat对象简介和使用

目录 1、Mat对象与IplImage对象 2、Mat对象使用 3、Mat定义数组 4、相关的代码演示 1、Mat对象与IplImage对象 先看看Mat对象:图片在计算机眼里都是一个二维数组; 在OpenCV中,Mat是一个非常重要的类,用于表示图像或矩阵数据。…

⭐Unity 将电脑打开的窗口画面显示在程序中

1.效果: 下载资源包地址: Unity中获取桌面窗口 2.下载uWindowCapturev1.1.2.unitypackage 放入Unity工程 3.打开Single Window场景,将组件UwcWindowTexture的PartialWindowTitle进行修改,我以腾讯会议为例 感谢大家的观看&#xf…

CSS3实现轮播效果

在我们不使用JS的情况下&#xff0c;是否也可以实现轮播功能呢&#xff1f; 答应是可以的 上代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>轮播</title><style>.boss…

激活函数整理

sigmoid函数 import torch from d2l import torch as d2l %matplotlib inline ​ xtorch.arange(-10,10,0.1,requires_gradTrue) sigmoidtorch.nn.Sigmoid() ysigmoid(x) ​ d2l.plot(x.detach(),y.detach(),x,sigmoid(x),figsize(5,2.5)) sigmoid函数连续、光滑、单调递增&am…

python爬取诗词名句网-三国演义,涉及知识点:xpath,requests,自动识别编码,range

页面源代码: <!DOCTYPE html> <html lang="zh"> <head><script src="https://img.shicimingju.com/newpage/js/all.js"></script><meta charset="UTF-8"><title>《三国演义》全集在线阅读_史书典籍_…

RV1126边缘计算AI盒子,支持4-6路1080p视频,2T 算力

1 产品概述 信迈推出基于瑞芯微Rockchip RV1126架构的AI边缘计算主板&#xff0c;RV1126芯片是四核ARM Cortex-A7,1.5GHz&#xff0c; RSIC-V 200MHz CPU &#xff0c;NPU2.0Tops。AI边缘计算主板外围接口丰富&#xff0c;拥有超强扩展性&#xff0c;可广泛应用在智慧安防、工…

docker一键安装

1.把docker_compose_install文件夹放在任意路径&#xff1b; 2.chmod -R 777 install.sh 3.执行./install.sh 兼容&#xff1a;CentOS7.6、麒麟V10服务器版、统信UOS等操作系统。 下载地址&#xff08;本人上传&#xff0c;免积分下载&#xff09;&#xff1a;https://downlo…

JS逆向之加密参数定位

文章目录 前言加密参数的处理步骤加密参数的定位方法搜索断点XHR断点DOM断点EVENT断点 hook 前言 当我们对网络请求进行抓包分析之后&#xff0c;需要用开发者工具对加密参数进行全局搜索。当搜索不到加密参数的时候&#xff0c;应该采取什么解决方法去定位。 还有一个应用场…

【动态规划】C++ 算法458:可怜的小猪

作者推荐 视频算法专题 涉及知识点 动态规划 数学 力扣458:可怜的小猪 有 buckets 桶液体&#xff0c;其中 正好有一桶 含有毒药&#xff0c;其余装的都是水。它们从外观看起来都一样。为了弄清楚哪只水桶含有毒药&#xff0c;你可以喂一些猪喝&#xff0c;通过观察猪是否…

TDengine 签约西电电力

近年来&#xff0c;随着云计算和物联网技术的迅猛发展&#xff0c;传统电力行业正朝着数字化、信息化和智能化的大趋势迈进。在传统业务基础上&#xff0c;电力行业构建了信息网络、通信网络和能源网络&#xff0c;致力于实现发电、输电、变电、配电和用电的实时智能联动。在这…

13.若依代码自动生成功能详解

文章目录 1.代码自动生成功能2.功能的使用3. 代码的导出和使用 1.代码自动生成功能 基于若依的目录结构&#xff0c;若依本身提供了代码生成功能&#xff0c;可以根据数据库表的内容&#xff0c;生成一些基本的CRUD的前后端的功能。本文将生成过程中的一些注意事项&#xff0c…

html 原生网页使用ElementPlus 日期控件el-date-picker换成中文

项目&#xff1a; 原生的html,加jQuery使用不习惯&#xff0c;新html页面导入vue3,element plus做界面&#xff0c;现在需要把日历上英文切成中文。 最终效果&#xff1a; 导入能让element plus日历变成中文脚本&#xff1a; elementplus, vue3对应的js都可以通过创建一个vu…

2023年12月 C/C++(一级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:数的输入和输出 输入一个整数和双精度浮点数,先将浮点数保留2位小数输出,然后输出整数。 时间限制:1000 内存限制:65536 输入 一行两个数,分别为整数N(不超过整型范围),双精度浮点数F,以一个空格分开。 输出 一行两个数,分…

首次落地零担快运!商用车自动驾驶跑出交付加速度

即将迈入2024年&#xff0c;还活着的自动驾驶玩家&#xff0c;身上有两个显著标签&#xff1a;选对了细分赛道、会玩。 10月以来&#xff0c;Cruise宣布在美国德州奥斯汀、休斯顿、亚利桑那州凤凰城和加州旧金山全面停止所有自动驾驶出租车队运营服务&#xff0c;通用汽车计划…

Spark与云存储的集成:S3、Azure Blob Storage

在现代数据处理中&#xff0c;云存储服务如Amazon S3和Azure Blob Storage已成为存储和管理数据的热门选择。与此同时&#xff0c;Apache Spark作为大数据处理框架也备受欢迎。本文将深入探讨如何在Spark中集成云存储服务&#xff0c;并演示如何与S3和Azure Blob Storage进行互…