解密TF-IDF:打开文本分析的黑匣子

1.TF-IDF概述

TF-IDF,全称是“Term Frequency-Inverse Document Frequency”,中文意为“词频-逆文档频率”。这是一种在信息检索和文本挖掘中常用的加权技术。TF-IDF用于评估一个词语对于一个在语料库中的文件集或一个语料库中的其中一份文件的重要程度。它是一种统计方法,用以评估词语对于一个文件集或一个查询库中的其中之一的重要性。其基本思想是:如果某个词语在一篇文章中出现的频率高,并且在其他文章中很少出现,则认为这个词语具有很好的类别区分能力,适合用来分类。

TF-IDF算法由两部分组成:TF(词频)和IDF(逆文档频率)。下面是它们的详细介绍:

  1. 词频(TF)

    • 定义:某个词在文章中的出现次数。这个数字通常会被规范化(通常是词频除以文章总词数),以防止它偏向长的文件。(即,某一特定词语的出现次数除以该文件的总词数)
    • 计算方法 TF ( t ) = 在某一类中词条t出现的次数 该类中所有的词条数目 \text{TF}(t) = \frac{\text{在某一类中词条t出现的次数}}{\text{该类中所有的词条数目}} TF(t)=该类中所有的词条数目在某一类中词条t出现的次数
  2. 逆文档频率(IDF)

    • 定义:逆文档频率是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。
    • 计算方法 IDF ( t ) = log ⁡ 语料库的文档总数 包含词条t的文档数目 + 1 \text{IDF}(t) = \log \frac{\text{语料库的文档总数}}{\text{包含词条t的文档数目} + 1} IDF(t)=log包含词条t的文档数目+1语料库的文档总数
    • 注意:分母之所以要加1,是为了避免分母为0(即避免该词语不在语料库中出现过)。

因此,TF-IDF实际上是: TF-IDF ( t ) = TF ( t ) × IDF ( t ) \text{TF-IDF}(t) = \text{TF}(t) \times \text{IDF}(t) TF-IDF(t)=TF(t)×IDF(t)

这个值越大,表示词语在文本中的重要性越高。TF-IDF经常用于文本挖掘、用户建模、信息检索领域,例如在搜索引擎中,用于评估和排列文档相对于用户查询的相关性。TF-IDF的优点是简单快速,而且容易理解。但它也有缺点,例如它不能完全捕捉词语之间的相互信息,也不能考虑词序和语义信息。

2.TextBlob库介绍

TextBlob 是一个简单的Python库,用于处理文本数据,并执行常见的自然语言处理(NLP)任务。它建立在NLTK和Pattern库之上,提供了一个直观的接口来处理文本数据,使得文本分析和操作变得更加容易。TextBlob非常适合初学者,因为它的API简单易用。

下面是TextBlob的一些主要功能和用法:

  1. 情感分析

    • TextBlob可以用于分析文本的情感,即文本是正面的、负面的还是中性的。它为此提供了一个简单的API,可以直接给出情感极性(正面或负面)和主观性(客观或主观)的分数。
    • 例如:blob = tb("I love TextBlob. It's amazing!"),然后使用blob.sentiment来获取情感分析的结果。
  2. 分词

    • TextBlob可以将文本分解为单词或句子。这在进行词频统计、情感分析或其他语言处理任务之前非常有用。
    • 例如:blob.wordsblob.sentences可以分别用于获取单词和句子。
  3. 词性标注

    • TextBlob可以自动为文本中的每个单词进行词性标注(如名词、动词、形容词等)。
    • 使用blob.tags可以获取词性标注的结果。
  4. 翻译和语言检测

    • TextBlob能够将文本翻译成另一种语言,并且能够检测文本的语言。
    • 通过blob.translate(to='es')可以将文本翻译成西班牙语,blob.detect_language()用于检测文本的语言。
  5. 名词短语提取

    • TextBlob还可以从文本中提取名词短语,这对于提取关键信息特别有用。
    • 使用blob.noun_phrases可以提取名词短语。
  6. 拼写检查和纠正

    • TextBlob还提供了简单的拼写检查和纠正功能。
    • 使用blob.correct()可以纠正文本中的拼写错误。

安装TextBlob相当简单,只需使用pip命令:pip install textblob。一旦安装,您就可以开始导入TextBlob并对文本进行各种操作。

总的来说,TextBlob是一个功能强大而又易于使用的工具,非常适合进行快速的文本分析和处理,特别是对于NLP入门者。

3.代码实现

这个代码使用 TF-IDF 查找文本中的重要单词,主要包括了计算TF-IDF值的几个关键步骤。以下是对代码的逐步解释:

  1. 导入必要的库

    • 首先,代码导入了mathtextblob库。math用于执行数学运算,如对数计算;TextBlob用于文本处理,如分词。
  2. 定义TF(词频)函数

    • tf函数计算特定单词在文档中的词频。这是通过将单词在文档中出现的次数除以文档中的总词数来实现的。
  3. 定义文档计数函数

    • n_containing函数统计在多少个文档中出现了特定的单词。这对于后续的IDF计算非常重要。
  4. 定义IDF(逆文档频率)函数

    • idf函数计算单词的逆文档频率。它使用了math.log函数来获取文档总数除以出现该单词的文档数的对数值。
  5. 定义TF-IDF计算函数

    • tfidf函数结合了上面的tfidf函数,通过相乘来得到特定单词在特定文档中的TF-IDF值。
  6. 创建文档实例

    • 代码中创建了三个TextBlob文档实例(document1document2document3),每个实例都包含一段文本。
  7. 创建文档列表

    • 将这三个文档放入一个列表bloblist,用于后续的TF-IDF计算。
  8. 遍历每个文档并计算TF-IDF值

    • 代码遍历bloblist中的每个文档,对每个文档中的每个单词计算TF-IDF值。
    • 对于每个文档,它创建了一个字典scores,键是单词,值是该单词的TF-IDF值。
  9. 排序和打印结果

    • 对于每个文档,代码通过TF-IDF值对单词进行排序,并打印每个文档的TF-IDF值最高的前五个单词及其分数。
import math
from textblob import TextBlob as tb# 下载NLTK语料库,这通常只需要执行一次
import nltk
nltk.download('punkt')# tf函数统计词语出现的频率
def tf(word, blob):return blob.words.count(word) / len(blob.words)# 返回包含word单词的文档数目
def n_containing(word, bloblist):return sum(1 for blob in bloblist if word in blob.words)# 统计逆词频
def idf(word, bloblist):return math.log(len(bloblist)/(1+n_containing(word, bloblist)))def tfidf(word, blob, bloblist):return tf(word, blob) * idf(word, bloblist)document1 = tb("""Python is a 2000 made-for-TV horror movie directed by Richard
Clabaugh. The film features several cult favorite actors, including William
Zabka of The Karate Kid fame, Wil Wheaton, Casper Van Dien, Jenny McCarthy,
Keith Coogan, Robert Englund (best known for his role as Freddy Krueger in the
A Nightmare on Elm Street series of films), Dana Barron, David Bowe, and Sean
Whalen. The film concerns a genetically engineered snake, a python, that
escapes and unleashes itself on a small town. It includes the classic final
girl scenario evident in films like Friday the 13th. It was filmed in Los Angeles,California and Malibu, California. Python was followed by two sequels: PythonII (2002) and Boa vs. Python (2004), both also made-for-TV films.""")document2 = tb("""Python, from the Greek word (πύθων/πύθωνας), is a genus of
nonvenomous pythons[2] found in Africa and Asia. Currently, 7 species are
recognised.[2] A member of this genus, P. reticulatus, is among the longest
snakes known.""")document3 = tb("""The Colt Python is a .357 Magnum caliber revolver formerly
manufactured by Colt's Manufacturing Company of Hartford, Connecticut.
It is sometimes referred to as a "Combat Magnum".[1] It was first introduced
in 1955, the same year as Smith & Wesson's M29 .44 Magnum. The now discontinued
Colt Python targeted the premium revolver market segment. Some firearm
collectors and writers such as Jeff Cooper, Ian V. Hogg, Chuck Hawks, Leroy
Thompson, Renee Smeets and Martin Dougherty have described the Python as the
finest production revolver ever made.""")bloblist = [document1, document2, document3]
for index, blob in enumerate(bloblist):print('Top words in document {}'.format(index+1))scores = {word: tfidf(word, blob, bloblist) for word in blob.words}# 按照得分降序排列sorted_words = sorted(scores.items(), key=lambda x: x[1], reverse=True)# 打印出得分前5单词for word, score in sorted_words[:5]:print("\tWord:{},TF-IDF:{}".format(word, round(score, 5)))

这个代码实现提供了一个实用的方法来分析文本数据,并且可以揭示哪些单词对于文档的区分最为重要。您可以在这个基础上进一步扩展或修改代码,以适应更复杂的文本分析需求。

4.TF-IDF的应用

TF-IDF(词频-逆文档频率)是一种在文本处理中广泛使用的技术。它在多个领域有着重要的应用,特别是在信息检索、文档分类和聚类等方面。以下是TF-IDF在这些领域中应用的详细介绍:

1.信息检索

  • 搜索引擎:在搜索引擎中,TF-IDF用于评估和排序与用户查询最相关的文档。当用户输入一个查询时,搜索引擎会计算查询中的关键词在每个文档中的TF-IDF值。文档的TF-IDF值越高,该文档与查询的相关性就越大,因此这些文档会被排在搜索结果的更前面。
  • 关键词提取:TF-IDF还常用于从大量文本中提取关键词。通过计算整个文档集合中每个词的TF-IDF值,可以识别出哪些词对于文档的区分度最高,这些词通常是该文档的关键词。

2.文档分类和聚类

  • 文档分类:TF-IDF在文档分类中的应用是通过计算文档集合中每个词的TF-IDF值,来确定文档的特征词集。这些特征词可以用作机器学习模型的输入,来对文档进行分类。例如,新闻文章可以根据它们的TF-IDF特征被分类到不同的主题如政治、体育或娱乐。
  • 文档聚类:在无监督学习中,TF-IDF可以用于文档聚类。通过比较文档的TF-IDF特征向量,可以计算文档之间的相似度,并基于这些相似度将文档聚集成不同的群组或类别。

3.其他应用

  • 情感分析:TF-IDF有时用于情感分析,通过加权特定词汇的情感倾向,帮助确定整个文档的情感色彩。
  • 文本摘要:TF-IDF可以用于自动文本摘要,通过识别文本中的关键句子和短语来创建摘要。
  • 推荐系统:在推荐系统中,TF-IDF有助于识别用户可能感兴趣的项目。例如,通过分析用户阅读过的文章的TF-IDF值,系统可以推荐类似主题的其他文章。

总体而言,TF-IDF是一种非常灵活的工具,可以应用于各种文本相关的领域。它的主要优势在于能够有效识别文档中重要的词汇,这些词汇在区分文档内容方面发挥着关键作用。然而,TF-IDF的一个局限性是它不能捕捉词汇之间的上下文关系,这在某些应用中可能是必需的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/610459.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BigDecimal使用记录

在公司经费这块用到了BigDecimal类,特此整理记录一下。 一、BigDecimal简介: float和double类型的主要设计目标是为了科学计算和工程计算。他们执行二进制浮点运算,这是为了在广域数值范围上提供较为精确的快速近似计算而精心设计的。然而&a…

vulhub中的Apache HTTPD 多后缀解析漏洞详解

Apache HTTPD 多后缀解析漏洞 1.查看python版本 这里python版本很重要,因为版本过低可能会导致后面的结果运行不成功 这里我就遇到了因为版本过低而执行不了docker-compose up -d的情况 查看python版本 cd /usr/bin ls -al python* 当版本过低时安装高版本的 …

_Incapsula_Resource与Rc4混淆分析

一、获得混淆js 这么一个地址 https://www.interasia.cc/_Incapsula_Resource?SWJIYLWA5074a744e2e3d891814e9a2dace20bd4,719d34d31c8e3a6e6fffd425f7e032f3 浏览器打开这个地址 复制这个js,到浏览器调试 先格式化查看,也就是一个eval函数执行b函数 …

base64 图片进行编码、解码;api调用

1、base64 图片进行编码、解码 编码 import base64# 假设您有一个图像文件,例如 image.jpg with open(r"C:\Users\l****1686722996428308480-1 (1).jpg", rb) as image_file:# 读取图像文件的二进制数据image_data image_file.read()# 将二进制数据编码…

C语言基础语法跟练

题源&#xff1a;牛客网 1、输出"Hello Nowcoder!"。开始你的编程之旅吧。 #include <stdio.h>int main() {printf("Hello Nowcoder!");return 0; } 2、KiKi学会了printf在屏幕输出信息&#xff0c;他想输出一架小飞机。请帮他编写程序输出这架小…

超实用的 Python 库之lxml使用详解

概要 XML&#xff08;可扩展标记语言&#xff09;和HTML&#xff08;超文本标记语言&#xff09;是广泛用于数据交换和网页构建的标记语言。在Python中&#xff0c;有许多库可以用来解析和处理XML和HTML文档&#xff0c;其中最强大和常用的之一是lxml。lxml是一个高性能、功能…

回归预测 | Matlab实现DE-BP差分算法优化BP神经网络多变量回归预测

回归预测 | Matlab实现DE-BP差分算法优化BP神经网络多变量回归预测 目录 回归预测 | Matlab实现DE-BP差分算法优化BP神经网络多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现DE-BP差分算法优化BP神经网络多变量回归预测&#xff08;完整源码和…

spring-mvc数据绑定和表单标签库(介绍)

spring-mvc数据绑定和表单标签库 1. WEB-INF下页面跳转2. ModelAttribute来注解非请求处理方法3. 表单标签4. 其他标签5. IDEA tomcat控制台中文乱码问题处理 1. WEB-INF下页面跳转 容器启动后&#xff0c;如何默认显示web-inf目录下的系统首页。 2. ModelAttribute来注解非…

设计模式-空对象模式

设计模式专栏 模式介绍模式特点应用场景空对象模式和单例模式的区别代码示例Java实现空对象模式Python实现空对象模式 空对象模式在spring中的应用 模式介绍 空对象模式是一种设计模式&#xff0c;用于处理对象不存在的情况。它通过返回一个空对象来代替 null 值&#xff0c;从…

flutter 配置安卓的签名

背景 最近遇到一个需求&#xff0c;需要实现app的热更新,了解了一下热更新方案时间的时间有点久&#xff0c;就做了个app升级的过渡版本&#xff0c;然后遇到问题 真机安装遇到签名不一致的问题 如下 安装过程 版本升级的代码如下 ///版本更新检查static Future<VersionEnti…

冲刺2024年AMC8竞赛:往年真题练一练和答案详解(3)

今天我们继续来做一做往年的AMC8真题&#xff0c;通过高质量的真题来体会我们所学的知识如何解题&#xff0c;建立快速思考、做对题目的策略。 今天分享的五道题目仍然是随机从六分成长独家制作的575道在线题库&#xff08;来自于往年真题&#xff09;中抽取5道题来做一下&…

Parallel patterns: convolution —— An introduction to stencil computation

在接下来的几章中&#xff0c;我们将讨论一组重要的并行计算模式。这些模式是许多并行应用中出现的广泛并行算法的基础。我们将从卷积开始&#xff0c;这是一种流行的阵列操作&#xff0c;以各种形式用于信号处理、数字记录、图像处理、视频处理和计算机视觉。在这些应用领域&a…

面试 React 框架八股文十问十答第三期

面试 React 框架八股文十问十答第三期 作者&#xff1a;程序员小白条&#xff0c;个人博客 相信看了本文后&#xff0c;对你的面试是有一定帮助的&#xff01;关注专栏后就能收到持续更新&#xff01; ⭐点赞⭐收藏⭐不迷路&#xff01;⭐ 1&#xff09;React 事件机制 Reac…

Linux环境变量LD_LIBRARY_PATH配置

解决snmpwalk报错 报错提示&#xff1a;./bin/snmpwalk:error while loading shared libraries:libnetsnmp.so.40:cannot open shared object file: No such file or directory. 环境变量LD_LIBRARY_PATH LD_LIBRARY_PATH是Linux环境变量名&#xff0c;该环境变量主要用于指…

基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模

2022年11月30日&#xff0c;可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5&#xff0c;将人工智能的发展推向了一个新的高度。2023年4月&#xff0c;更强版本的ChatGPT4.0上线&#xff0c;文本、语音、图像等多模态交互方式使其在…

Java泛型:灵活多变的类型参数化工具

&#x1f451;专栏内容&#xff1a;Java⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、泛型1、什么是泛型2、泛型的语法 二、泛型类的使用1、泛型类的语法2、泛型如何编译的2.1、擦除机制2.2、为什么不能实例化泛…

控制el-table的列显示隐藏

控制el-table的列显示隐藏&#xff0c;一般的话可以通过循环来实现&#xff0c;但是假如业务及页面比较复杂的话&#xff0c;list数组循环并不好用。 在我们的页面中el-table-column是固定的&#xff0c;因为现在是对现有的进行维护和迭代更新。 对需要控制列显示隐藏的页面进…

Django搜索排序

Django提供了一个SearchQuery类把查询词转换为一个搜索查询对象。 使用全文搜索的实例&#xff0c;根据查询词出现的频率和它们之间的距离对结果进行排序。 关于全文搜索更多内容&#xff0c;请看Django全文搜索-CSDN博客 相关性排序 编辑views.py&#xff0c;添加以下导入…

JavaScript中的数据类型

1.基本数据类型 数字&#xff08;Number&#xff09;&#xff1a;用于表示数字&#xff0c;包括整数和浮点数。字符串&#xff08;String&#xff09;&#xff1a;用于表示文本数据&#xff0c;由一系列字符组成。布尔值&#xff08;Boolean&#xff09;&#xff1a;用于表示真…