[嵌入式AI从0开始到入土]9_yolov5在昇腾上推理

[嵌入式AI从0开始到入土]嵌入式AI系列教程

注:等我摸完鱼再把链接补上
可以关注我的B站号工具人呵呵的个人空间,后期会考虑出视频教程,务必催更,以防我变身鸽王。

第一章 昇腾Altas 200 DK上手
第二章 下载昇腾案例并运行
第三章 官方模型适配工具使用
第四章 炼丹炉的搭建(基于Ubuntu23.04 Desktop)
第五章 Ubuntu远程桌面配置
第六章 下载yolo源码及样例运行验证
第七章 转化为昇腾支持的om离线模型
第八章 jupyter lab的使用
第九章 yolov5在昇腾上推理
未完待续…


文章目录

  • [嵌入式AI从0开始到入土]嵌入式AI系列教程
  • 前言
  • 一、环境准备
    • 1、确认驱动版本
    • 2、CANN安装
    • 3、Mindx sdk安装
  • 二、新建项目
    • 1、input
    • 2、models
    • 3、output
    • 4、utils_det.py
    • 5、main.py
  • 三、运行
  • 四、IDE
  • 五、问题
    • 1、No module named cv2
    • 2、No module named mindx
    • 3、undefined symbol: aclrtCreateStreamWithConfig
    • 4、AttributeError: 'NoneType' object has no attribute ' infer '
    • 5、libpython3.9.so.1.0: cannot open shared object file: No such file or directory
    • 6、libxxx.so :cannot open shared object file
  • 总结


前言

注:本人代码在pc机上完成编写,运行需要昇腾推理卡或者开发者套件
先说下我的环境,pc机是ubuntu23.04,CANN版本7.0.0.alpha001,mindx版本5.0.RC3。Atlas 200 DK上CANN版本5.1.RC2.alpha007,mindx版本3.0.0。务必注意版本兼容性问题
别问我为什么鸽了这么久,不信你就跳过第一节!!!

一、环境准备

1、确认驱动版本

如下图所示,为200DK的驱动和CANN的对照表,需严格按照图中所写版本进行安装,否则运行报错。
关于驱动版本的查看,使用npu-smi info,version后的数字对应版本,但没找到具体对应关系。目前我只确定200DK官方制卡工具提供的镜像是最新的1.0.13.alpha的驱动,也就是version:21.0.4。
似乎200i A2需要使用CANN6.2,一般就是镜像自带的。
在这里插入图片描述

2、CANN安装

如果版本符合要求,直接跳过,否则需要重新安装。这个不在重复,看往期文章就可以了。下载地址点这里。社区版,记得添加硬件信息,不然找不到对应的版本。
注意一点,下载aarch64的,别下成x86_64的就行。

3、Mindx sdk安装

我们需要的是mxVision,另外两个现在暂时用不上
这里我卡了好久,后来才查到也需要安装当前CANN匹配的Mindx。具体对照表没查到,根据论坛和我个人的测试,6.2或者6.3的cann应该安装5.0的mindx,6.0.0或者5.1应该是3.0mindx。
下载地址放在这,我使用镜像自带的5.1cann和3.0.0mindx测试通过。
注意:因为安装mindx的时候会复制算子到cann的文件夹内,所以需要先装cann再装mindx,即使是升降级版本

二、新建项目

这是我的项目结构,项目也已经上传,在本文最上方的绑定资源中。没找到点这里跳转。
在这里插入图片描述
这里atc虽然在里面,但是我们已经转换了模型,所以不再解析了。

1、input

这里我使用了一个images的文件夹用来存放需要检测的图片。正常的jpg图片都可以,但是需要图中有你数据集中的类(我这用的coco128的数据集,支持的物体还是很多的)。

2、models

这里负责存放模型文件和类别名称。names.txt格式如下

person
bicycle
car
motorcycle
airplane
......

3、output

存放输出的结果

4、utils_det.py

主要是模型的前后处理函数,内容如下

import timeimport cv2
import numpy as np
import torch
import torchvisiondef letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=False, scaleFill=False, scaleup=True):# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232shape = img.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])if not scaleup:  # only scale down, do not scale up (for better test mAP)r = min(r, 1.0)# Compute paddingratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingif auto:  # minimum rectangledw, dh = np.mod(dw, 64), np.mod(dh, 64)  # wh paddingelif scaleFill:  # stretchdw, dh = 0.0, 0.0new_unpad = (new_shape[1], new_shape[0])ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratiosdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn img, ratio, (dw, dh)def non_max_suppression(prediction,conf_thres=0.25,iou_thres=0.45,classes=None,agnostic=False,multi_label=False,labels=(),max_det=300,nm=0,  # number of masks
):"""Non-Maximum Suppression (NMS) on inference results to reject overlapping detectionsReturns:list of detections, on (n,6) tensor per image [xyxy, conf, cls]"""if isinstance(prediction, (list, tuple)):  # YOLOv5 model in validation model, output = (inference_out, loss_out)prediction = prediction[0]  # select only inference outputdevice = prediction.devicemps = 'mps' in device.type  # Apple MPSif mps:  # MPS not fully supported yet, convert tensors to CPU before NMSprediction = prediction.cpu()bs = prediction.shape[0]  # batch sizenc = prediction.shape[2] - nm - 5  # number of classesxc = prediction[..., 4] > conf_thres  # candidates# Checksassert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'# Settings# min_wh = 2  # (pixels) minimum box width and heightmax_wh = 7680  # (pixels) maximum box width and heightmax_nms = 30000  # maximum number of boxes into torchvision.ops.nms()time_limit = 0.5 + 0.05 * bs  # seconds to quit aftermulti_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)t = time.time()mi = 5 + nc  # mask start indexoutput = [torch.zeros((0, 6 + nm), device=prediction.device)] * bsfor xi, x in enumerate(prediction):  # image index, image inference# Apply constraints# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-heightx = x[xc[xi]]  # confidence# Cat apriori labels if autolabellingif labels and len(labels[xi]):lb = labels[xi]v = torch.zeros((len(lb), nc + nm + 5), device=x.device)v[:, :4] = lb[:, 1:5]  # boxv[:, 4] = 1.0  # confv[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # clsx = torch.cat((x, v), 0)# If none remain process next imageif not x.shape[0]:continue# Compute confx[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf# Box/Maskbox = xywh2xyxy(x[:, :4])  # center_x, center_y, width, height) to (x1, y1, x2, y2)mask = x[:, mi:]  # zero columns if no masks# Detections matrix nx6 (xyxy, conf, cls)if multi_label:i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).Tx = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)else:  # best class onlyconf, j = x[:, 5:mi].max(1, keepdim=True)x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]# Filter by classif classes is not None:x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]# Check shapen = x.shape[0]  # number of boxesif not n:  # no boxescontinueelif n > max_nms:  # excess boxesx = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidenceelse:x = x[x[:, 4].argsort(descending=True)]  # sort by confidence# Batched NMSc = x[:, 5:6] * (0 if agnostic else max_wh)  # classesboxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scoresi = torchvision.ops.nms(boxes, scores, iou_thres)  # NMSif i.shape[0] > max_det:  # limit detectionsi = i[:max_det]output[xi] = x[i]if mps:output[xi] = output[xi].to(device)if (time.time() - t) > time_limit:print(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')break  # time limit exceededreturn outputdef xywh2xyxy(x):# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-righty = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left xy[:, 1] = x[:, 1] - x[:, 3] / 2  # top left yy[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right xy[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right yreturn ydef get_labels_from_txt(path):labels_dict = dict()with open(path) as f:for cat_id, label in enumerate(f.readlines()):labels_dict[cat_id] = label.strip()return labels_dictdef scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):# Rescale coords (xyxy) from img1_shape to img0_shapeif ratio_pad is None:  # calculate from img0_shapegain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / newpad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh paddingelse:gain = ratio_pad[0][0]pad = ratio_pad[1]coords[:, [0, 2]] -= pad[0]  # x paddingcoords[:, [1, 3]] -= pad[1]  # y paddingcoords[:, :4] /= gainclip_coords(coords, img0_shape)return coordsdef clip_coords(boxes, shape):# Clip bounding xyxy bounding boxes to image shape (height, width)if isinstance(boxes, torch.Tensor):  # faster individuallyboxes[:, 0].clamp_(0, shape[1])  # x1boxes[:, 1].clamp_(0, shape[0])  # y1boxes[:, 2].clamp_(0, shape[1])  # x2boxes[:, 3].clamp_(0, shape[0])  # y2else:  # np.array (faster grouped)boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1])  # x1, x2boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0])  # y1, y2def nms(box_out, conf_thres=0.4, iou_thres=0.5):try:boxout = non_max_suppression(box_out, conf_thres=conf_thres, iou_thres=iou_thres, multi_label=True)except:boxout = non_max_suppression(box_out, conf_thres=conf_thres, iou_thres=iou_thres)return boxoutdef draw_bbox(bbox, img0, color, wt, names):det_result_str = ''for idx, class_id in enumerate(bbox[:, 5]):if float(bbox[idx][4] < float(0.05)):continueimg0 = cv2.rectangle(img0, (int(bbox[idx][0]), int(bbox[idx][1])), (int(bbox[idx][2]), int(bbox[idx][3])), color, wt)img0 = cv2.putText(img0, str(idx) + ' ' + names[int(class_id)], (int(bbox[idx][0]), int(bbox[idx][1] + 16)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)img0 = cv2.putText(img0, '{:.4f}'.format(bbox[idx][4]), (int(bbox[idx][0]), int(bbox[idx][1] + 32)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)det_result_str += '{} {} {} {} {} {}\n'.format(names[bbox[idx][5]], str(bbox[idx][4]), bbox[idx][0], bbox[idx][1], bbox[idx][2], bbox[idx][3])return img0

5、main.py

这里也是卡了我好几天,mindx.sdk那两行ide一直在报错,但似乎能跑。

import cv2  # 图片处理三方库,用于对图片进行前后处理
import numpy as np  # 用于对多维数组进行计算
import torch  # 深度学习运算框架,此处主要用来处理数据from mindx.sdk import Tensor  # mxVision 中的 Tensor 数据结构
from mindx.sdk import base  # mxVision 推理接口from utils_det import get_labels_from_txt, letterbox, scale_coords, nms, draw_bbox  # 模型前后处理相关函数# 初始化资源和变量
base.mx_init()  # 初始化 mxVision 资源
DEVICE_ID = 0  # 设备id
model_path = 'models/best.om'  # 模型路径
image_path = 'input/images/1.jpg'  # 测试图片路径# 数据前处理
img_bgr = cv2.imread(image_path, cv2.IMREAD_COLOR)  # 读入图片
img, scale_ratio, pad_size = letterbox(img_bgr, new_shape=[640, 640])  # 对图像进行缩放与填充,保持长宽比
img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, HWC to CHW
img = np.expand_dims(img, 0).astype(np.float16)  # 将形状转换为 channel first (1, 3, 640, 640),即扩展第一维为 batchsize
img = np.ascontiguousarray(img) / 255.0  # 转换为内存连续存储的数组
img = Tensor(img)  # 将numpy转为转为Tensor类# 模型推理, 得到模型输出
model = base.model(modelPath=model_path, deviceId=DEVICE_ID)  # 初始化 base.model 类
output = model.infer([img])[0]  # 执行推理。输入数据类型:List[base.Tensor], 返回模型推理输出的 List[base.Tensor]# 后处理
output.to_host()  # 将 Tensor 数据转移到内存
output = np.array(output)  # 将数据转为 numpy array 类型
boxout = nms(torch.tensor(output), conf_thres=0.4, iou_thres=0.5)  # 利用非极大值抑制处理模型输出,conf_thres 为置信度阈值,iou_thres 为iou阈值
pred_all = boxout[0].numpy()  # 转换为numpy数组
scale_coords([640, 640], pred_all[:, :4], img_bgr.shape, ratio_pad=(scale_ratio, pad_size))  # 将推理结果缩放到原始图片大小
labels_dict = get_labels_from_txt('models/names.txt')  # 得到类别信息,返回序号与类别对应的字典
img_dw = draw_bbox(pred_all, img_bgr, (0, 255, 0), 2, labels_dict)  # 画出检测框、类别、概率# 保存图片到文件
cv2.imwrite('output/result.png', img_dw)
print('save infer result success')

三、运行

很简单,但是务必注意,200DK默认的python是2.7.17,而镜像中配置的是python3.9.7,我们的包也是安装到python3里的。当然,你可以直接做软连接,具体方便请自行搜索。

python3 main.py

运行成功会有如图所示的提示
在这里插入图片描述

四、IDE

这里我必须狠狠的压力一下华为,mindstudio竟然不支持打开远程ssh的工程,甚至选了远程的python,还读取不到pip软件包。
这里pycharm虽然可以远程,包也读取正常,但是运行代码后似乎不会同步结果到本地。当然,你愿意的话可以远程打开工程,当然,没记错的话这个是收费的功能。
所以,那肯定得掏出我们祖传多年的vscode啦。我们只需要安装Remote-SSH这个插件,然后添加如下配置

Host Altas200DKHostName 192.168.3.2User HwHiAiUser

点击连接,然后安装python扩展,即可开始愉快的敲代码啦!

五、问题

1、No module named cv2

首先确认安装,使用pip list命令查询是否有opencv-pythonopencv-python-headless。如果存在,请检查你的运行main.py的python版本是否是这个pip列出包的这个环境。在200DK上就需要使用python3而不是python
如果不存在,使用这个命令安装opencv。

pip install opencv-python

之后重复以上动作。

2、No module named mindx

在mindx sdk的安装目录下找到这个包,pip安装即可。

pip install mindx-5.0rc3-py3-none-any.whl

在这里插入图片描述

3、undefined symbol: aclrtCreateStreamWithConfig

这大概率就是mindx和cann版本不匹配导致的。更换匹配的版本即可。

4、AttributeError: ‘NoneType’ object has no attribute ’ infer ’

请检查模型路径是否正确,没错,我承认我真的没看见路径错了,花了两天去怀疑环境有问题,甚至重新制卡了。
另外,没有昇腾的推理卡也会报这个错误。可以使用npu-smi info来查看推理卡是否正常被识别。

5、libpython3.9.so.1.0: cannot open shared object file: No such file or directory

这个问题会在安装mindx的时候出现,请务必注意。解决方法如下:
将Python安装路径下的libpython3.9.so.1.0对象(我的在/usr/local/python3.9.7/lib/下),复制到“/usr/lib”下。

6、libxxx.so :cannot open shared object file

这里可能是类似libadump_server.so这种的,其他运行库都一样的操作。

  1. 搜索这个文件,发现在ascend-toolkit/latest/x86_64-linux/lib64下面。
  2. 添加路径至环境变量.bashrc 发现还是找不到
  3. 执行vim /etc/ld.so.conf ,如果不能保存的话使用sudo提权
  4. 在最下面加入这个共享库的绝对路径,例如/home/ai/Ascend/ascend-toolkit/latest/x86_64-linux/lib64
  5. 执行ldconfig更新共享库路径
  6. 问题解决

总结

这个案例基本就是按照华为官方文档里写的改的,但他那个案例似乎下载不了。目前推理好像有点慢,应该是在前后处理耗时比较长,大家可以自行对前后处理函数做优化。或者直接换成c++的版本,性能会有所提高,但我是废物[大哭],根本看不懂。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/591995.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp运行到开发者工具中

uniapp 项目在微信开发者工具中运行&#xff0c;用于开发微信小程序。 微信 appid 获取地址&#xff1a;微信公众平台 运行到微信开发者工具中 一、进入微信公众平台、微信扫码登录、选择开发管理、选择开发设置、复制 appid 。 二、打开 manifest.json 配置文件、选择微信小…

居家康养领导品牌“颐家”完成B轮融资,商业化进程再加速

近日&#xff0c;颐家&#xff08;上海&#xff09;医疗养老服务有限公司&#xff08;以下称“颐家”“公司”&#xff09;宣布引入战略股东。此次融资额达数千万元人民币&#xff0c;资金将主要用于公司业务数智化升级及自费业务产品开发、团队扩展和业务渠道的开拓。本轮融资…

闭包,垃圾回收机制

1.垃圾回收机制 当函数执行完毕后,函数内部的变量就会被销毁。 代码&#xff1a; function fn() {var a 10;a;return a;}console.log(fn()); 输出的结果: 11 持续调用的结果: 2.变量的私有化 代码: function fn() {var a 10;return function fn1() {return a;}…

Redis——centos7环境安装Redis6.2.14版本,make命令编译时报错:jemalloc/jemalloc.h:没有那个文件或目录

一、报错原因 在redis-6.2.14文件夹下有一个README.md文件&#xff0c;有如下一段话&#xff1a; 在构建 Redis 时&#xff0c;通过设置 MALLOC 环境变量来选择非默认的内存分配器。Redis 默认编译并链接到 libc malloc&#xff0c;但在 Linux 系统上&#xff0c;jemalloc 是…

c语言内嵌汇编知识点记录

内容在飞书云文档&#xff0c;点击打开即可。 Docshttps://r0dhfl3ujy9.feishu.cn/docx/EaVIdjGVeoS6fUxiKWkcjAq8nWg?fromfrom_copylink

2024 Win 安装Oracle12C

文章目录 一、下载1.1 官方下载1.2 官方Archive下载1.3 博主提供 二、安装2.1 解压2.2 安装 三、连接3.1 SQL Plus3.2 切换到容器数据库orclpdb3.3 查询SID 四、查看数据4.1 SQL Develop 连接4.2 创建新用户4.3 develop 直接创建新用户4.3.2 SQL 错误: ORA-65096: 公用用户名或…

STM32CubeMX教程13 ADC - 单通道转换

目录 1、准备材料 2、实验目标 3、ADC概述 4、实验流程 4.0、前提知识 4.1、CubeMX相关配置 4.1.1、时钟树配置 4.1.2、外设参数配置 4.1.3、外设中断配置 4.2、生成代码 4.2.1、外设初始化调用流程 4.2.2、外设中断调用流程 4.2.3、添加其他必要代码 5、常用函数…

堆排序(C语言版)

一.堆排序 堆排序即利用堆的思想来进行排序&#xff0c;总共分为两个步骤&#xff1a; 1. 建堆 升序&#xff1a;建大堆 降序&#xff1a;建小堆 2. 利用堆删除思想来进行排序 1.1.利用上下调整法实现堆排序 第一步&#xff1a;建堆 好了&#xff0c;每次建堆都要问自己…

MVCC 并发控制原理-源码解析(非常详细)

基础概念 并发事务带来的问题 1&#xff09;脏读&#xff1a;一个事务读取到另一个事务更新但还未提交的数据&#xff0c;如果另一个事务出现回滚或者进一步更新&#xff0c;则会出现问题。 2&#xff09;不可重复读&#xff1a;在一个事务中两次次读取同一个数据时&#xff0c…

【逆向】从逆向角度看C++

从逆向角度看C 1.2.1 虚函数地址表&#xff08;虚表&#xff09; 定义&#xff1a;当类中定义有虚函数时&#xff0c;编译器会把该类中所有虚函数的首地址保存在一张地址表中&#xff0c;即虚函数地址表。虚表信息在编译后被链接到执行文件中&#xff0c;因此所获得的虚表地址…

《3D数学基础-图形和游戏开发》阅读笔记 | 3D数学基础 (学习中)

文章目录 3D数学基础矢量/向量概述 - 什么是向量单位矢量&#xff1a;只关注方向不关注大小 数学运算矢量的加法与减法减法的几何意义计算一个点到另一个点的位移矢量的点积与叉积 矩阵矩阵的几何意义 3D数学基础 矢量/向量 在笔记中 变量使用小写字母表示&#xff0c;a由于…

Linux实用指令篇

目录结构 Linux文件系统结构是从Unix文件结构演进过来的。在Linux文件系统中&#xff0c;通用的目录名用于表示一些常见的功能。 Linux 的文件系统是采用层级式的树状目录结构&#xff0c;在此结构中的最上层是 根目录 “/”&#xff0c;然后在此目录下再创建其他的目录。在L…

安装 Node.js、npm

安装 nodejs 安装Node.js的最简单的方法是通过软件包管理器。 Node.js官网&#xff1a;https://nodejs.org/en/download/ cd /usr/local/src/wget -c https://nodejs.org/dist/v18.16.0/node-v18.16.0-linux-x64.tar.xz xz -d node-v18.16.0-linux-x64.tar.xz tar -xf node…

轻松搞定软件开发:找对软件开发公司的流程与注意事项!

随着数字化时代的来临&#xff0c;软件开发在企业和个人生活中扮演着越来越重要的角色&#xff0c;然而&#xff0c;如何找到一家合适的软件开发公司却成为了一个令人头疼的问题。 本文将为你详细解读找软件开发公司的流程&#xff0c;以及在选择过程中需要注意的事项&#xf…

C#编程-编写和执行C#程序

编写和执行C#程序 可以使用Windows记事本应用程序来编写C#程序。在记事本应用程序中创建C#程序后,您需要编译并执行该程序以获得所需的输出。编译器将程序的源代码转换为机器代码,这样计算机就能理解程序中的指令了。 注释 除了记事本,您还可以使用任何其他文本编辑器来编写…

UnityRenderStreaming使用记录(一)

UnityRenderStreaming 地址https://github.com/Unity-Technologies/UnityRenderStreaming 一、客户端相关 1、unity工程添加Package 2、WebRTC选Version 3.0.0-pre.6&#xff0c;升级会报错 导入Samples 3、打开Broadcast场景 二、服务器相关 这里使用github上的源码&…

kubeadm创建k8s集群

kubeadm来快速的搭建一个k8s集群&#xff1a; 二进制搭建适合大集群&#xff0c;50台以上。 kubeadm更适合中下企业的业务集群。 部署框架 master192.168.10.10dockerkubelet kubeadm kubectl flannelnode1192.168.10.20dockerkubelet kubeadm kubectl flannelnode2192.168.1…

MySQL数据库高级SQL语句及存储过程

目录 一、高级SQL语句 &#xff08;一&#xff09;case语句 1.语法定义 2.示例 &#xff08;二&#xff09;空值(NULL) 和 无值( ) 1.区别 2.示例 &#xff08;1&#xff09;字符长度 &#xff08;2&#xff09;判断方法 ① 空值(NULL) ② 无值( ) &#xff08;3…

centos 7.9 升级系统默认的python2.7到python 2.7.18

centos 7.9 升级系统默认的python2.7到python 2.7.18 备份旧版本 mv /usr/bin/python /usr/bin/python_2.7.5 下载新版本 Download Python | Python.org Python Release Python 2.7.18 | Python.org wget https://www.python.org/ftp/python/2.7.18/Python-2.7.18.tgz cd /…

哨兵1号回波数据(L0级)FDBAQ压缩算法详解

本专栏目录: 全球SAR卫星大盘点与回波数据处理专栏目录-CSDN博客 1. 全球SAR卫星回波数据压缩算法统计 各国的SAR卫星的压缩算法按照时间轴排列如下: 可以看出传统的分块BAQ压缩算法(上图粉色)仍然是主流,哨兵1号其实也有传统的BAQ压缩模式。 本文介绍哨兵1号用的FDBAQ算…