智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.孔雀算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用孔雀算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.孔雀算法

孔雀算法原理请参考:https://blog.csdn.net/u011835903/article/details/127779440
孔雀算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

孔雀算法参数如下:

%% 设定孔雀优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明孔雀算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/579112.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go语言学习一

Go语言的发展历史 Go语言的三个作者分别是:罗伯特格利茨默(Robert Griesemer)、罗伯派克 (Rob Pike) 和 肯汤普森(Ken Thompson)。 Robert Griesemer是Google V8、Chubby和HotSpot JVM的主要贡献…

Crowd Counting近期研究(附代码资源)

1.Semi-Supervised Crowd Counting with Contextual Modeling: Facilitating Holistic Understanding of Crowd Scenes paper:https://arxiv.org/abs/2310.10352 code:https://github.com/cha15yq/MRC-Crowd 摘要: 为了减轻训练可靠的人群计数模型所需的繁重标注…

二分查找——OJ题(二)

📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、点名1、题目讲解2、算法原理3、代码实现 二、搜索旋转排序数组中的最⼩值1、题目讲解2、算…

免费部署静态网页,国内外访问套餐 GitHub Pages、Vercel、CLOUDFLARE

部署自己的博客或者前端静态页面,要嘛找一些免费托管平台,要嘛自己买服务器和域名。买了服务器,还得自己配置 nginx 和域名解析等。如果希望国内外都能访问,服务器最好是香港的,域名也可以不用备案。如果只是博客&…

rime中州韵 程序配置结构讲解 保姆级教程

在完成了 Rime 引擎/框架的安装,并安装了基础输入方案后,我们就可以在这个基础上开始 DIY 了。毕竟,Rime 最大的优势就是可定制性强。 但是,在我们 DIY 前,我们需要先做些准备工作。磨刀不误砍柴工,我们需…

Javaweb见解

1 web相关的概念 1.1 软件的基本架构 C/S(Client-Server)。比如我们手机上的app QQ软件 飞秋 特点:必须下载特定的客户端程序。服务端升级之后,客户端也需要随着升级。 B/S(Broswer-Server).比如京东网站,腾讯qq官方网站 特点&#xff1…

一文搞清楚Java BytesToAscii和AsciiToBytes

文章目录 BytesToAsciiAsciiToBytes10进制和16进制byte对比 bytes2HexString和hexStringToBytes测试 BytesToAscii Testpublic void convertBytesToAscii() {byte[] bytes new byte[] { 0x31, 0x32, 0x33, 0x34, 0x35 };String asciiString new String(bytes);System.out.pri…

你怎么看待软件测试这个工作的?转行真的甘心吗!

先说一个插曲:上个月我有同学在深圳被裁员了,和我一样都是软件测试,不过他是平安外包,所以整个组都撤了,他工资和我差不多都是14K。 现在IT互联网已经比较寒冬,特别是软件测试,裁员先裁测试&am…

DES、AES简介

DES简介 DES(Data Encryption Standard)是一种对称加密算法,1977年被美国国家标准局(NIST)确定为联邦信息处理标准(FIPS),并作为商用数据加密标准。DES使用56位密钥和64位的分组长度…

KaiwuDB 时序引擎数据去重功能详解

一、背景介绍 随着物联网领域的快速发展,时序数据的产生和处理需求不断增长。时序数据是按照时间顺序收集和记录的数据,其特点在于数据具有时间戳,并且时间是数据分析和查询的一个重要维度。 在实际场景中,可能存在多条相同时间…

k8s是什么

生么是k8s: Kubernetes:8个字母省略,就是k8s 自动部署,自动扩展和管理容器化部署的应用程序的一个开源系统、 k8s是负责自动化运维管理多个容器化程序的集群,是一个功能强大的容器编排工具。 分布式和集群化的分布式进行容器管…

分支限界法求解01背包(优先队列)【java】

实验内容:运用分支限界法解决0-1背包问题 实验目的:分支限界法按广度优先策略遍历问题的解空间树,在遍历过程中,对已经处理的每一个结点根据限界函数估算目标函数的可能取值,从中选取使目标函数取得极值的结点优先进行广度忧先搜…

python 面试题第一弹

1. 如何理解Python中的深浅拷贝 浅拷贝(Shallow Copy)创建一个新的对象,该对象的内容是原始对象的引用。这意味着新对象与原始对象共享相同的内存地址,因此对于可变对象来说,如果修改了其中一个对象,另一个…

Echarts随机生成颜色

Echarts生成随机颜色,并且不要黑色、灰色、棕色等难看的颜色,暖色系并且颜色亮丽, 可以通过修改saturation 和lightness 的随机数值,提高颜色饱和度和亮度 function generateWarmColor() {let hue Math.floor(Math.random() * 3…

自动驾驶数据集waymo

目录 waymo-open-dataset-viewer 依赖项: 可视化参考: nuScenes数据集 相关资料: 3d室内数据集 scanent waymo-open-dataset-viewer https://github.com/erksch/waymo-open-dataset-viewer/tree/master 依赖项: # 安装 …

leetCode算法—15. 三数之和

15. 三数之和 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三…

arcpy获取矢量坐标系

代码: shppath "矢量路径" shpdescribe arcpy.Describe(shppath) print(shpdescribe.spatialReference.name) 结果:

智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.袋獾算法4.实验参数设定5.算法结果6.参考文献7.MA…

前端----css 的引入方式

css的三种引入方式 行内式内嵌式&#xff08;内部样式&#xff09;外链式 1. 行内式 直接在标签的 style 属性中添加 css 样式 示例代码: <div style"width:100px; height:100px; background:red ">hello</div>优点&#xff1a;方便、直观。 缺点&…

人工智能_机器学习078_聚类算法_概念介绍_聚类升维_降维_各类聚类算法_有监督机器学习_无监督机器学习---人工智能工作笔记0118

首先看一下什么是聚类,我们可以进入sklearn的官网去看看 可以看到这里,首先classification 这个分类我们学完了,然后就是regression回归我们也学完了对吧,其实我们现实生活中的,大部分问题就是 这两种问题就可以解决了. 然后我们再来看一个: clustering,这个就是聚类对吧.聚类算…