实验内容:运用分支限界法解决0-1背包问题
实验目的:分支限界法按广度优先策略遍历问题的解空间树,在遍历过程中,对已经处理的每一个结点根据限界函数估算目标函数的可能取值,从中选取使目标函数取得极值的结点优先进行广度忧先搜索,从而不断调整搜索方向,尽快找到问题的解。因为限界函数常常是基于向题的目标函数而确定的,所以,分支限界法适用于求解最优化问题。本次实验利用分支限界法解决0-1背包问题。
算法核心思想
- 首先对物品按照单位重量价值排序
- 计算上界值
- 计算装入背包的真实价值bestvalue
- 使用优先队列存储活节点
- 根据bestvalue和重量进行剪枝
- 根据优先队列先出队的节点选择最接近最优的结果的情况
详细过程可参考文章:0-1背包问题-分支限界法(优先队列分支限界法)_0-1背包问题-优先队列式分支界限法的基础思想和核心步骤-CSDN博客
解空间树:
完整代码:
import java.util.PriorityQueue;
//排列树
class Node implements Comparable<Node> {int level; // 当前层级int weight; // 当前重量int value; // 当前价值int bound; // 上界public Node(int level, int weight, int value, int bound) {this.level = level;this.weight = weight;this.value = value;this.bound = bound;}@Overridepublic int compareTo(Node other) {// 按照bound的降序排列return other.bound - this.bound;}
}public class Knapsack {int capacity; // 背包容量int n; // 物品数量int[] weights; // 物品重量int[] values; // 物品价值int bestvalue;public Knapsack(int capacity, int n, int[] weights, int[] values) {this.capacity = capacity;this.n = n;this.weights = weights;this.values = values;}public int maxValue() {// 初始化优先队列PriorityQueue<Node> queue = new PriorityQueue<>();queue.add(new Node(0, 0, 0, bound(0, 0,0)));int maxValue = 0;this.bestvalue = 0;while (!queue.isEmpty()) {Node node = queue.poll(); // 取出队首元素--扩展节点if (node.level == n) { // 达到叶子节点,更新最大值maxValue = Math.max(maxValue, node.value);} else {// 左子树:选择当前物品if (node.weight + weights[node.level] <= capacity) {int leftbound = bound(node.level + 1, node.weight + weights[node.level] ,node.value + values[node.level]);if(this.bestvalue<node.value + values[node.level]){this.bestvalue = node.value + values[node.level];}if (leftbound<this.bestvalue){continue;}queue.add(new Node(node.level + 1, node.weight + weights[node.level],node.value + values[node.level],leftbound));}// 右子树:不选择当前物品int rightbound =bound(node.level + 1, node.weight,node.value);if (rightbound<this.bestvalue){continue;}queue.add(new Node(node.level + 1, node.weight, node.value,rightbound));}}return maxValue;}// 计算上界函数private int bound(int i, int weight,int val) {int remainingWeight = capacity - weight; // 剩余重量int remainingValue = 0; // 剩余价值int j = i;for (; j < n; j++) {if (weights[j] > remainingWeight) { // 当前物品装不下,跳出循环break;}remainingWeight -= weights[j]; // 减去当前物品的重量remainingValue += values[j]; // 加上当前物品的价值}if (j<n){ //使用了double类型进行除法运算来保留小数部分的价值remainingValue = (int) (remainingValue + remainingWeight*(double)(values[j]/weights[j]));}return remainingValue+val;}public static void main(String[] args) {//int[] wt = {4,7,5,3};//int[] val = {40,42,25,12};//必须按照单位单位价值从大到小int[] wt = {4,1,1,2,12};int[] val = {10,2,1,2,4};int capacity = 15;int n = wt.length;Knapsack knapsack = new Knapsack(capacity,n,wt,val);int res = knapsack.maxValue();System.out.println(res);}
}
输出结果:15