【深度学习目标检测】十一、基于深度学习的电网绝缘子缺陷识别(python,目标检测,yolov8)

YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。

YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。

YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。

在YOLOv8中,还使用了一些技术来提高检测性能。首先是使用了多尺度检测。YOLOv8在不同的尺度上检测物体,这样可以更好地处理物体的大小变化和远近距离差异。其次是利用了FPN(Feature Pyramid Network)结构来提取多尺度特征。FPN可以将不同层级的特征图进行融合,使得算法对不同大小的物体都有较好的适应性。

此外,YOLOv8还利用了一种称为CSPDarknet的网络结构来减少计算量。CSPDarknet使用了CSP(Cross Stage Partial)结构,在网络的前向和后向传播过程中进行特征融合,从而减少了网络的参数量和计算量。

在训练阶段,YOLOv8使用了一种称为CutMix的数据增强技术。CutMix将不同图像的一部分进行混合,从而增加了数据的多样性和鲁棒性。

总而言之,YOLOv8是一种快速而准确的物体检测算法,它通过引入Darknet-53网络、多尺度检测、FPN结构、CSPDarknet结构和CutMix数据增强等技术,实现了对不同大小和距离的物体进行快速、准确的检测。

本文介绍了基于Yolov8的电网绝缘子检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

效果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

电网绝缘子缺陷数据集,只有1个类别,就是绝缘子缺陷。该数据集包含600个图片,其中540个训练集,60个验证集。

示例图片如下:

原始的数据格式为VOC格式,本文提供转换好的yolov8格式数据集,,可以直接放入yolov8中训练,数据集地址:绝缘子缺陷数据集yolov8格式

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加insulator.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/insulator/insulator-yolov8  # 更换为自己的路径
train: images/train 
val: images/val  
test: images/test  # Classes
names:# 0: normal0: insulator
2、修改模型配置文件

在ultralytics/ultralytics/cfg/models/v8目录下添加yolov8n_insulator.yaml,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)
3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=deploy name=yolov8_insulator exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8n_insulator.yaml  data=ultralytics/ultralytics/cfg/datasets/insulator.yaml
4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=deploy/yolov8_insulator/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/insulator.yaml

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = '0606.jpg'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('0606_results.jpg')  # 保存图像

本教程训练好的权重和推理代码、示例代码连接:推理代码和训练好的权重

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/578219.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[EFI]Dell Latitude-7400电脑 Hackintosh 黑苹果efi引导文件

硬件型号驱动情况主板 Dell Latitude-7400 处理器Intel Core i7-8665U已驱动内存16GB DDR4 RAM已驱动硬盘Toshiba KIOXIA 512GB SSD已驱动显卡Intel UHD 620 Graphics已驱动声卡Realtek ALC256已驱动有线网卡 无 无无线网卡蓝牙Intel Wireless-AC 9560已驱动 支持系统版本 maco…

【OAuth2】用户授权第三方应用,流程详解及模式

目录 一、讲述 1. 是什么 2. 工作流程 3. OAuth2的好处 二、协议流程 1. 应用场景 2. 实例 3. 安全体现 4. 角色 5. 认证流程 三、授权模式 1. 授权码模式 2. 简化(隐式)模式 3. 密码模式 4. 客户端模式 每篇一获 一、讲述 1. 是什么 OAuth(开放授…

HttpURLConnection发送各种内容格式

通过java.net.HttpURLConnection类实现http post发送Content-Type为multipart/form-data的请求。 json处理使用com.fasterxml.jackson 图片压缩使用net.coobird.thumbnailator log使用org.slf4j 一些静态变量 private static final Charset charset StandardCharsets.UTF_8;…

【开源】基于Vue+SpringBoot的新能源电池回收系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户档案模块2.2 电池品类模块2.3 回收机构模块2.4 电池订单模块2.5 客服咨询模块 三、系统设计3.1 用例设计3.2 业务流程设计3.3 E-R 图设计 四、系统展示五、核心代码5.1 增改电池类型5.2 查询电池品类5.3 查询电池回…

前端八股文(js篇)

一.强制类型转换规则 首先需要了解隐式转换所调用的函数。 当程序员显示调用Boolean(value),Number(value),String(value)完成的类型转换,叫做显示类型转换。 当通过new Boolean&…

Golang硬件控制:将软件力量扩展到物理世界

Golang硬件控制:将软件力量扩展到物理世界 2023-11-1728发布于吉林 版权 简介: Golang硬件控制:将软件力量扩展到物理世界 引言 在过去的几十年中,计算机科学和软件工程领域取得了巨大的发展和进步。现在,我们可以编写各种强大的软件应用程序来解决各种问题。然而,软…

蓝桥杯备赛 day 1 —— 递归 、递归、枚举算法(C/C++,零基础,配图)

目录 🌈前言 📁 枚举的概念 📁递归的概念 例题: 1. 递归实现指数型枚举 2. 递归实现排列型枚举 3. 递归实现组合型枚举 📁 递推的概念 例题: 斐波那契数列 📁习题 1. 带分数 2. 反硬币 3. 费解的…

手把手教你安装Kali Linux

Kali Linux操作系统 Kali Linux,一种基于Debian的Linux发行版,是用于渗透测试和网络安全领域的专业工具。它包含了大量的安全测试工具和漏洞扫描器,用于评估网络的安全性和防御能力。Kali Linux有一个友好的界面和易于使用的工具&#xff0c…

数字调制学习总结

调制:将基带的信号的频谱搬移到指定的信道通带内的过程。 解调:把指定信号通带内的信号还原为基带的过程。 1、2ASK调制 原理如下图所示,基带信号为单极不归零码,与载波信号相乘,得到调制信号。 调制电路可以用开关…

力扣-收集足够苹果的最小花园周长[思维+组合数]

题目链接 题意: 给你一个用无限二维网格表示的花园,每一个 整数坐标处都有一棵苹果树。整数坐标 (i, j) 处的苹果树有 |i| |j| 个苹果。 你将会买下正中心坐标是 (0, 0) 的一块 正方形土地 ,且每条边都与两条坐标轴之一平行。 给你一个整…

非对称加密与对称加密的区别是什么?

在数据通信中,加密技术是防止数据被未授权的人访问的关键措施之一。而对称加密和非对称加密是两种最常见的加密技术,它们被广泛应用于数据安全领域,并且可以组合起来以达到更好的加密效果。本文将探讨这两种技术的区别,以及它们在…

Java生成UUID的常用方式

java.util.UUID类来生成UUID import java.util.UUID;public class UUIDGenerator {public static void main(String[] args) {//随机生成一个UUID对象UUID uuid UUID.randomUUID();System.out.println("生成的UUID为:" uuid.toString());//通过给定的…

输电线路导线舞动在线监测装置_带气象监测-深圳鼎信

导线舞动是指输电线路上的导线在风的作用下产生的高频振动现象。如果导线舞动幅度过大,会给电网运行造成威胁,例如可能会导致导线相间放电、挂线等问题,长时间的高频振动还可能引发断线、杆塔倒塌等事故。为了保障电网的安全运行,…

DBAPI个人版如何升级到企业版

安装好企业版软件,并启动 注意要新建mysql数据库,执行新版本的ddl_mysql.sql脚本 在旧版本系统中分别导出数据源、分组、API,得到3个json文件 注意全选所有的数据导出 在新版本系统中导入数据源 在新版本系统中导入分组 进入分组管理菜单&…

【Vue3干货】template setup 和 tsx 的混合开发实践

前言 一般而言,我们在用Vue的时候,都是使用模板进行开发,但其实Vue 中也是支持使用jsx 或 tsx的。 最近我研究了一下如何在项目中混合使用二者,并且探索出了一些模式, 本文就是我在这种开发模式下的一些总结和思考&am…

华为配置策略路由(基于IP地址)示例

组网需求 如图1所示,汇聚层Switch做三层转发设备,接入层设备LSW做用户网关,接入层LSW和汇聚层Switch之间路由可达。汇聚层Switch通过两条链路连接到两个核心路由器上,一条是高速链路,网关为10.1.20.1/24;另…

基于大语言模型LangChain框架:知识库问答系统实践

ChatGPT 所取得的巨大成功,使得越来越多的开发者希望利用 OpenAI 提供的 API 或私有化模型开发基于大语言模型的应用程序。然而,即使大语言模型的调用相对简单,仍需要完成大量的定制开发工作,包括 API 集成、交互逻辑、数据存储等…

Databend 开源周报第 125 期

Databend 是一款现代云数仓。专为弹性和高效设计,为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务:https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展,遇到更贴近你心意的 Databend 。 密码策略 Data…

智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.浣熊算法4.实验参数设定5.算法结果6.参考文献7.MA…

vol----随记!!!

目录 一、代码生成1.先新建一个功能的对应的代码配置各项解释: 2.后设置配置菜单3.再点保存,生成vue页面,生成model,生成业务类4.再通过菜单设置编写系统菜单 一、代码生成 1.先新建一个功能的对应的代码配置 各项解释&#xff…