智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.浣熊算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用浣熊算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.浣熊算法

浣熊算法原理请参考:https://blog.csdn.net/u011835903/article/details/130538719
浣熊算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

浣熊算法参数如下:

%% 设定浣熊优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明浣熊算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/578200.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

麒麟V10arm桌面版的安装包在麒麟V10服务器版安装

安装过后,可执行程序可能运行不了,看起来就像没识别为可执行程序。在终端运行,会发现其实是缺少了某些库,比如libicui18n.so.66、libicuuc.so.66、libicudata.so.66和libm.so.6库版本不对。 报这个错:error while loa…

Unity VR Pico apk安装失败:INSTALL_FAILED_UPDATE_INCOMPATIBLE

我的报错: PICO4企业版。安装apk,报错“安装失败。(所属的Unity项目打包的apk,被我在同一台pico4安装了20次) 调试方法: PIco4发布使用UNITY开发的Vr应用,格式为apk,安装的时候发生…

Quartz持久化(springboot整合mybatis版本实现调度任务持久化)--提供源码下载

1、Quartz持久化功能概述 1、实现使用quartz提供的默认11张持久化表存储quartz相关信息。 2、实现定时任务的编辑、启动、关闭、删除。 3、实现自定义持久化表存储quartz定时任务信息。 4、本案例使用springboot整合mybatis框架和MySQL数据库实现持久化 5、提供源码下载 …

众和策略:12月新批国产网游版号数量过百

上星期五(22日),A股冲高回落,三大股指挨近午盘拉升走高,午后再度回落走低,沪指尾盘跌幅收窄。到收盘,沪指跌0.13%报2914.78点,深成指跌0.39%报9221.31点,创业板指跌0.37%…

构建外卖系统:从技术到实战

在当今高度数字化的社会中,外卖系统的开发变得愈发重要。本文将从技术角度出发,带领读者一步步构建一个基础的外卖系统,并涵盖关键技术和实际代码。 1. 技术选型 1.1 后端开发 选择Node.js和Express框架进行后端开发,搭建一个灵…

Kruskal算法求最小生成树(kruskal算法)

题目描述 给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。 求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。 给定一张边带权的无向图 G(V,E),其中 V 表示图中点的集合&#xff…

【操作系统】探究进程奥秘:显示进程列表的解密与实战

​🌈个人主页:Sarapines Programmer🔥 系列专栏:Linux专栏:《探秘Linux | 操作系统解密》⏰诗赋清音:月悬苍穹泛清辉,梦随星河徜徉辉。情牵天际云千层,志立乘风意自飞。 ​ 目录 &a…

OpenCV之图像匹配与定位

利用图像特征的keypoints和descriptor来实现图像的匹配与定位。图像匹配算法主要有暴力匹配和FLANN匹配,而图像定位是通过图像匹配结果来反向查询它们在目标图片中的具体坐标位置。 以QQ登录界面为例,将整个QQ登录界面保存为QQ.png文件,QQ登…

IDEA2023版如何创建web项目

一、新建项目 点击File->New->Project...,如果是第一次创建项目则单击New Project 二、添加Web Application 建好的样子 把web移动到main目录下同时改名为webapp 三、不存在Add Framework Support添加Web Application 如何存在Add Framework Support&#x…

运维工程师的出路揭秘:跨越35岁半衰期,探寻职业发展新路径

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 公众号:网络豆云计算学堂 座右铭:低头赶路,敬事如仪 个人主页: 网络豆的主页​​​​​ 目录 写在前面 本章主题 一.35岁被称为运维半衰期…

800+顶尖架构师齐聚深圳,第十届GIAC全球互联网架构大会,分享行业前沿视角与技术架构落地实践思考!(附:大会核心PPT下载)

2023年6月30-7月1日,由MSUP与高可用架构社区、深圳市软件行业协会联合主办的GIAC全球互联网架构大会在深圳华侨城洲际酒店圆满落幕。 本届大会邀请到了阿里、美图、腾讯、字节跳动、顺丰、华为、快手、B站等多个行业的近百位一线架构师、技术专家,围绕AI…

类加载器及其类加载子系统

类加载器子系统作用 类加载器子系统的作用是负责将字节码文件加载到内存中,并将其转化为能够被虚拟机直接使用的形式。它是Java虚拟机的一部分,具体作用如下: 加载 类加载器负责将类的字节码文件加载到虚拟机的方法区中,以便…

L1-061:新胖子公式

题目描述 根据钱江晚报官方微博的报导,最新的肥胖计算方法为:体重(kg) / 身高(m) 的平方。如果超过 25,你就是胖子。于是本题就请你编写程序自动判断一个人到底算不算胖子。 输入格式: 输入在一行中给出两个正数,依次为…

白龙地铁消费项目(地铁消费系统,包括用户端、管理端)

大一学的C#可视化项目文件,所有功能均可使用。可以直接下载 下方是演示照片

sigmoid softmax优化

1.前言 最近在搞模型部署发现,推理速度不能满足我们需求,于是最近学习了优化算子技巧,学到了sigmoid,softmax算子优化,真的数学之美。2.sigmoid算子优化 一.算子优化图 我们根据sigmoid公式,我们进行求反…

谷歌公布 2023 年最受欢迎的 Chrome 扩展

2023年,谷歌公布了最受欢迎的Chrome扩展,共有12款涵盖了多个领域,从提升工作效率到游戏娱乐。这些扩展旨在增强用户的浏览体验和生产力。 Scribe 功能:使用AI记录工作流程并创建逐步指南。 特点:自动记录和生成详细…

【完整项目】基于Python+Tkinter+FFD(free-form deformations)的2D彩色图像实时网格自由变形软件的设计与实现

文章目录 一、效果展示二、前言介绍三、软件使用说明3.1 环境配置3.2 文件结构3.3 准备工作 四、快速开始五、主要思路算法思路网格变形和实时操作思路 六、总结与反思七、代码链接八、其他完整项目 一、效果展示 校正比萨斜塔: 人脸变形: 图像拼接结果…

C# 读取Word表格到DataSet

目录 功能需求 Office 数据源的一些映射关系 范例运行环境 配置Office DCOM 关键代码 组件库引入 ​核心代码 杀掉进程 总结 功能需求 在应用项目里,多数情况下我们会遇到导入 Excel 文件数据到数据库的功能需求,但某些情况下,也存…

基于VUE3+Layui从头搭建通用后台管理系统(前端篇)十七:演示功能模块相关功能实现

一、本章内容 本章实现常见业务功能,包括文章管理、商品管理、订单管理、会员管理等功能。 1. 详细课程地址: https://edu.csdn.net/course/detail/38183 2. 源码下载地址: 点击下载 二、界面预览 三、开发视频 3.1 B站视频地址:

Jenkins 自动设置镜像版本号

使用Jenkins环境变量当作镜像版本号 这样version变量就是版本号,在镜像构建的过程中可以使用 docker build 之后,如果有自己的镜像库,肯定要docker push 一下 至于部署的步骤,一般需要stop并删除原有的容器.我这里用的是docker-compose。同样…