严谨,保证,职业。

上午在教室上的课,老师对我们这些VB初学者又“耐着性子”侃了半天,具体讲的内容虽然不多,但是说来奇怪,总能从中得到动力。教育的艺术在于激励。

经过三天的学习,对VB感觉慢慢入门,这两天一遍看着视频一遍做百利,进度不快,也在网上找了点不认识的代码看,越发感兴趣,相信我一定能把VB学好。

这里不想说很多具体的知识,这几天下来,发现我首要的一个问题就是代码写的不规范,不严谨,虽然也屡次更新自己写的,但是依然不够。虽然VB提供了很方便的开发环境,并存在很多缺省属性,但是习惯利用这些是不太好的。老师所讲,我们要从开始就锻炼专业的素质,最起码的,写出的东西要简单,严谨,别人能看懂才行。变量先要声明吧,缺省属性要补充吧,注释的地方要写好吧,还要锻炼写代码的严谨性。还有对英文的要求,了解每个英文单词的含义,至少在计算机这门课里面的。举个例子,form1.Cls,Cls就是"clean screen",这样,知识就会很容易被记忆。Abs是absolute,表达绝对值的意思。

转载于:https://www.cnblogs.com/bless2016/archive/2012/01/11/4531503.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/576665.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ElasticSearch快速入门三(curl命令讲解)

API测试工具_微博开放平台:https://open.weibo.com/tools/console# 感兴趣是可以使用这个工具玩一下restful接口调用,可以更形象的了解restful 下面我们就继续下面的内内容讲解curl命令 什么是CURL? 就是以命令的方式来执行HTTP协议的请求…

机器学习笔记(四)——最大似然估计

一、最大似然估计的基本思想 最大似然估计的基本思想是:从样本中随机抽取n个样本,而模型的参数估计量使得抽取的这n个样本的观测值的概率最大。最大似然估计是一个统计方法,它用来求一个样本集的概率密度函数的参数。 二、似然估计 在讲最…

Log4j 入门总结

一、Log4j介绍 log4j是类似于java.util.logging的日志作用,即记录一些有用信息,是一个日志框架; log4j log for Java 日志框架的作用: (1)函数参数是否正确; (2)软件发布后,记录用户的每一步操作&#xff…

ElasticSearch API文档查看

elastic官方API文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/docs.html

机器学习笔记(五)——朴素贝叶斯分类

一、分类问题 分类实际上是我们在日常生活中经常使用的。比如说,在工作中,把自己手头的任务分为轻重缓急,然后按照优先级去完成它们。 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。 从数学的角度看C{c1,c2,…,ck}是类别的…

delphi函数,识别字符集编码

纪念不用 Delphi 开发7周年函数,获取web page文本,识别字符集编码;1 function CreateHttpRequest(proxyServer: string ; proxyPort: integer 0):2 TIdHTTP;3 function DecodeHttpRequestText(InString: string): string;4 implementatio…

取消Win7关机时的补丁更新

取消Win7关机时的补丁更新作者:三好 阅读: 30037人文:陕西 三好 Windows操作系统一直是在缝缝补补中前行的,Win7也不例外。由于系统自带的更新更安全更可靠,所以好多朋友都喜欢使用,如果将系统默认的“自动…

jdk下载

oracle官网:https://developer.oracle.com/java/ 一直往下拉到最低部 这里选择你需要的历史版本,我就选择 安装就不用我多说了,和以前安装jdk一样安装,配置环境变量

机器学习笔记(五)续——朴素贝叶斯算法的后验概率最大化含义

上一节中讲了朴素贝叶斯算法将实例分到后验概率最大的类。这等价于期望风险最小化。 假设使用0-1损失函数: L(Y,f(X)){1,0,Y≠f(X)Yf(X)L(Y, f(X)) = \Bigg\{ \begin{array} {ll}1, & Y \neq f(X) \\0, & Y = f(X)\end{array}上式中的f(x)是分类决策函数…

项目管理汇总

一、一个失败软件项目的思考 http://kb.cnblogs.com/page/113051/ 二、我们需要真正的软件项目经理 http://wangacidlemon.iteye.com/blog/1185903 评论写的不错,粘贴来先给大家分享一下 一个好的项目负责人,是不会自己去做具体事情的,他应…

ElasticSearch和solr的对比

关于ES:ElasticSearch是一个事实分布式搜索和分析引擎,使用其可以以前所未有的速度处理大数据,他用于全文搜索、结构化搜索、分析以及将这三者混合使用。维基百科使用ElasticSearch提供全文搜索并高亮关键字,以及输入实时搜索(sea…

机器学习笔记(六)——朴素贝叶斯法的参数估计

一、极大似然估计 在上一笔记中,经过推导,得到了朴素贝叶斯分类器的表示形式: yargmaxckP(Yck)∏jP(X(j)x(j)|Yck)(1)也就是说,朴素贝叶斯方法的学习是对概率P(Yck)和P(X(j)x(j)|Yck)的估计。故可以用极大似然估计法估计上述先验…

ElasticSearch和mysql对比

以员工文档 的形式存储为例:一个文档代表一个员工数据。存储数据到 ElasticSearch 的行为叫做索引,但在索引一个文档之前,需要确定将文档存储在哪里。一个 ElasticSearch 集群可以包含多个 索引,相应的每个索引可以包含多个类型 。…

最优化学习笔记(一)——牛顿法(一维搜索方法)

一、一维搜索方法 讨论目标函数为一元单值函数f:R→R时的最优化问题的迭代求解方法。 二、局部极小点的条件 n元实值函数f的一阶导数Df为: Df≜[∂f∂x1,∂f∂x2,…,∂f∂xn]Df \triangleq \lbrack \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partia…

针对12306.cn网站应用架够的一些看法

临近年终,公司请来一位讲师来给我们作培训,题目记得是设计匠艺。说实话,我做不到像讲师那样,快讲完课时能将自己所讲的内容都有条理整理一遍。我就大致讲讲我所做笔记的一些内容吧。总的来说这位讲师的实践经验很丰富,…

机器学习笔记(七)——决策树模型

引言 决策树(Decision Tree)是一种基本的分类和回归方法。它的扩展方法有GBDT和GBRT 等。决策树模型的学习过程主要有特征选择、决策树生成和剪枝。主要算法有ID3、C4.5和CART等。 一、决策树模型 决策树首先是一个树形结构,它包括两种类型…

ElasticSearch获取多个文档Multi GET API介绍

#■同时获取多个文档信息 #■例子:获职index:bank和shakespeare下面 #. I0为1.2.3.4.15.6.28的文档信息 GET /bank/bank_account/1 GET /bank/bank_account/2 GET /shakespcare/line/3 GET /bank/bank_account/4 GET /shakespeare/line/15 #日数组[] GET /_mget {"docs&qu…

机器学习笔记(八)——决策树模型的特征选择

一、引言 决策树构建过程中的特征选择是非常重要的一步。特征选择是决定用哪个特征来划分特征空间,特征选择是要选出对训练数据集具有分类能力的特征,这样可以提高决策树的学习效率。如果利用某一个特征进行分类与随机分类的结果没有很大的差别&#xf…

Bulk批量操作API的介绍

#多重模式 #批量操作bulk POST /library/books/_bulk {"index": {"_id": 1}} {"title":"Elasticsearch: The Definitive Guide","price":5} {"index": {"_id": 2}} {"title":"The Elast…

[转】:Android调试工具及方法

http://www.cnblogs.com/feisky/archive/2010/01/01/1637566.html--LogcatDump一份系统消息的日志。这些消息包括模拟器抛出错误时的堆栈跟踪。Android Log一个记录日志的类,用来将消息写入模拟器上的日志文件中。如果你在DDMS上运行logcat的话你可以就实时查看消息…