邻接矩阵
无向图和有向图在邻接矩阵中的表示方法:
无向图和有向图大同小异,在这里只以无向图为例,代码部分通过简单调整即可对应编译有向图
邻接矩阵数据类型定义
#define MaxVertices 100 //定义最大容量
typedef struct{ //包含权的邻接矩阵的的定义int Vertices[MaxVertices]; //顶点信息的数组int Edge[MaxVertices][MaxVertices]; //边信息的数组int numV; //顶点数int numE; //边数
}AdjMatrix;
以如关系图为例
根据上图,我们可以写出对应的邻接矩阵:
通过这个图可以看出,无向图对角线划分出来的两部分是互相对称的,由此即可通过创建无向图的邻接矩阵:
void CreateGraph(AdjMatrix *G) //图的生成函数
{ int n,e,vi,vj,w,i,j;printf("请输入图的顶点数和边数(以空格分隔):");scanf("%d%d",&n,&e);G->numV=n;G->numE=e;for(i=0;i<n;i++) //图的初始化for(j=0;j<n;j++){ if(i==j)G->Edge[i][j]=0;else G->Edge[i][j]=32767;}for(i=0;i<G->numV;i++) //将顶点存入数组中{ printf("请输入第%d个顶点的信息:",i+1);scanf("%d",&G->Vertices[i]);}printf("\n");for(i=0;i<G->numE;i++){ printf("请输入边的信息i,j,w(以空格分隔):");scanf("%d%d%d",&vi,&vj,&w); //若为不带权值的图,则w输入1//若为带权值的图,则w输入对应权值G->Edge[vi-1][vj-1]=w;//①G->Edge[vj-1][vi-1]=w;//②//无向图具有对称性的规律,通过①②实现//有向图不具备此性质,所以只需要①}
}
创建完无向图对应的邻接矩阵,我们需要对输出的格式进行一下控制,使其尽量按照普通手写的方式输出
void DispGraph(AdjMatrix G) //输出邻接矩阵的信息
{ int i,j;printf("\n输出顶点的信息(整型):\n");for(i=0;i<G.numV;i++)printf("%8d",G.Vertices[i]);printf("\n输出邻接矩阵:\n");printf("\t");for(i=0;i<G.numV;i++)printf("%8d",G.Vertices[i]);for(i=0;i<G.numV;i++){ printf("\n%8d",i+1);for(j=0;j<G.numV;j++){ if(G.Edge[i][j]==32767) //两点之间无连接时权值为默认的32767,但输出时为了方便输出 "∞"printf("%8s", "∞");elseprintf("%8d",G.Edge[i][j]);}printf("\n"); }
}
完整程序如下:
#include<stdio.h>
#include<stdlib.h>
#define MaxVertices 100 //假设包含100个顶点
#define MaxWeight 32767 //不邻接时为32767,但输出时用 "∞"
typedef struct{ //包含权的邻接矩阵的的定义int Vertices[MaxVertices]; //顶点信息的数组int Edge[MaxVertices][MaxVertices]; //边的权信息的数组int numV; //当前的顶点数int numE; //当前的边数
}AdjMatrix;void CreateGraph(AdjMatrix *G) //图的生成函数
{ int n,e,vi,vj,w,i,j;printf("请输入图的顶点数和边数(以空格分隔):");scanf("%d%d",&n,&e);G->numV=n;G->numE=e;for(i=0;i<n;i++) //图的初始化for(j=0;j<n;j++){ if(i==j)G->Edge[i][j]=0;else G->Edge[i][j]=32767;}for(i=0;i<G->numV;i++) //将顶点存入数组中{ printf("请输入第%d个顶点的信息(整型):",i+1);scanf("%d",&G->Vertices[i]);}printf("\n");for(i=0;i<G->numE;i++){ printf("请输入边的信息i,j,w(以空格分隔):");scanf("%d%d%d",&vi,&vj,&w); //若为不带权值的图,则w输入1//若为带权值的图,则w输入对应权值G->Edge[vi-1][vj-1]=w;//①G->Edge[vj-1][vi-1]=w;//②//无向图具有对称性的规律,通过①②实现//有向图不具备此性质,所以只需要①}
}
void DispGraph(AdjMatrix G) //输出邻接矩阵的信息
{ int i,j;printf("\n输出顶点的信息(整型):\n");for(i=0;i<G.numV;i++)printf("%8d",G.Vertices[i]);printf("\n输出邻接矩阵:\n");printf("\t");for(i=0;i<G.numV;i++)printf("%8d",G.Vertices[i]);for(i=0;i<G.numV;i++){ printf("\n%8d",i+1);for(j=0;j<G.numV;j++){ if(G.Edge[i][j]==32767) //两点之间无连接时权值为默认的32767,在无向图中一般用"0"表示,在有向图中一般用"∞",这里为了方便统一输出 "∞"printf("%8s", "∞");elseprintf("%8d",G.Edge[i][j]);}printf("\n"); }
}
int main()
{ AdjMatrix G;CreateGraph(&G);DispGraph(G);
}
运行结果如下: