时序预测 | Matlab实现SO-CNN-GRU蛇群算法优化卷积门控循环单元时间序列预测

时序预测 | Matlab实现SO-CNN-GRU蛇群算法优化卷积门控循环单元时间序列预测

目录

    • 时序预测 | Matlab实现SO-CNN-GRU蛇群算法优化卷积门控循环单元时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

时序预测 | Matlab实现SO-CNN-GRU蛇群算法优化卷积门控循环单元时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.Matlab实现SO-CNN-GRU蛇群算法优化卷积门控循环单元时间序列预测;
2.单变量时间序列预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

程序设计

  • 完整源码和数据获取方式1:私信博主回复Matlab实现SO-CNN-GRU蛇群算法优化卷积门控循环单元时间序列预测
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取): Matlab实现SO-CNN-GRU蛇群算法优化卷积门控循环单元时间序列预测,专栏外只能获取该程序。
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/56665.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iOS import包

Frameworks Frameworks 顾名思义就是框架&#xff0c;是第三方打包完成看不到源码&#xff0c;可以直接使用的 在项目中引用方式 OC 引用某一个文件&#xff0c;Frameworks一般会提供一个h文件引用全部其他文件 #import <JLRoutes/JLRoutes.h>swift 引用一个包&#x…

【Java 中级】一文精通 Spring MVC - 标签库 (八)

&#x1f449;博主介绍&#xff1a; 博主从事应用安全和大数据领域&#xff0c;有8年研发经验&#xff0c;5年面试官经验&#xff0c;Java技术专家&#xff0c;WEB架构师&#xff0c;阿里云专家博主&#xff0c;华为云云享专家&#xff0c;51CTO 专家博主 ⛪️ 个人社区&#x…

密码学学习笔记(二十一):SHA-256与HMAC、NMAC、KMAC

SHA-256 SHA-2是广泛应用的哈希函数&#xff0c;并且有不同的版本&#xff0c;这篇博客主要介绍SHA-256。 SHA-256算法满足了哈希函数的三个安全属性&#xff1a; 抗第一原像性 - 无法根据哈希函数的输出恢复其对应的输入。抗第二原像性 - 给定一个输入和它的哈希值&#xf…

Python WEB框架之FastAPI

Python WEB框架之FastAPI 今天想记录一下最近项目上一直在用的Python框架——FastAPI。 个人认为&#xff0c;FastAPI是我目前接触到的Python最好用的WEB框架&#xff0c;没有之一。 之前也使用过像Django、Flask等框架&#xff0c;但是Django就用起来太重了&#xff0c;各种…

SpringBoot+mybatis+pgsql多个数据源配置

一、配置文件 jdk环境&#xff1a;1.8 配置了双数据源springbootdruidpgsql&#xff0c;application.properties配置修改如下&#xff1a; #当前入库主数据库 spring.primary.datasource.typecom.alibaba.druid.pool.DruidDataSource spring.primary.datasource.driver-class…

Python|爬虫和测试|selenium框架模拟登录示例(一)

前言&#xff1a; 上一篇文章Python|爬虫和测试|selenium框架的安装和初步使用&#xff08;一&#xff09;_晚风_END的博客-CSDN博客 大概介绍了一下selenium的安装和初步使用&#xff0c;主要是打开某个网站的主页&#xff0c;基本是最基础的东西&#xff0c;那么&#xff0c;…

如何使用CSS实现一个平滑滚动到页面顶部的效果(回到顶部按钮)?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 平滑滚动到页面顶部的效果&#xff08;回到顶部按钮&#xff09;⭐ 创建HTML结构⭐ 编写CSS样式⭐ 编写JavaScript函数⭐ 添加滚动事件监听器⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右…

【golang】panic函数、recover函数以及defer语句

从panic被引发到程序终止运行的大致过程是什么&#xff1f; 大致过程&#xff1a; 某个函数中的某行代码有意无意地引发了一个panic。这时&#xff0c;初始的panic详情会被建立起来&#xff0c;并且该程序的控制权会立即从从行代码转移至调用其所属函数的那行代码上&#xff…

【原创】jmeter并发测试计划

bankQPS 创建线程组 设置并发参数 HTTP请求GET 添加HTTP请求 GET请求 查看结果树 HTTP请求 POST 添加HTTP请求 参数必须设置头信息格式&#xff1a; 添加HTTP头信息 查看结果树 可以选择&#xff0c;仅查看错误日志 汇总报告

华为数通方向HCIP-DataCom H12-821题库(单选题:81-100)

第81题 某公司新购入一台网络设备,作为网络管理员,初次配置该设备通常通过什么方式? A、FTP B、Telnet C、SNMP D、Console 口登录 答案: D 解析&#xff1a; 通常情况下&#xff0c;初次配置网络设备会通过Console口登录的方式进行。Console口是一种串口接口&#xff0c…

[Linux]进程控制

[Linux]进程控制 文章目录 [Linux]进程控制进程退出情况分类进程退出码的理解进程退出方式进程等待 进程退出情况分类 进程正常执行完成 运行结果正确运行结果错误 进程异常终止 – (进程产生错误后&#xff0c;收到了操作系统的信号) 进程退出码的理解 进程主体功能执行完毕…

提升Java开发效率:掌握HashMap的常见方法与基本原理

文章目录 前言一、概述1. 认识HashMap2. HashMap 的作用和重要性3. 简要讲解 HashMap 的基本原理和实现方式 二、了解 HashMap 创建及其的常见操作方法1. HashMap的创建2. 添加元素 put()3. 访问元素 get()4. 删除元素 remove()5. 计算大小 size()6. 迭代 HashMap for-each7.判…

深度学习11:Transformer

目录 什么是 Transformer&#xff1f; Encoder Decoder Attention Self-Attention Context-Attention 什么是 Transformer&#xff08;微软研究院笨笨&#xff09; RNN和Transformer区别 Universal Transformer和Transformer 区别 什么是 Transformer&#xff1f; ​ …

习题练习 C语言(暑期第二弹)

编程能力小提升&#xff01; 前言一、表达式判断二、Assii码的理解应用三、循环跳出判断四、数字在升序数组中出现的次数五、整数转换六、循环语句的应用七、函数调用八、两个数组的交集九、C语言基础十、图片整理十一、数组的引用十二、数组的引用十三、字符个数统计十四、多数…

【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论

文章目录 引言一、回顾二、梳理齐次线性方程组非齐次线性方程组 写在最后 引言 两个原因让我想写这篇文章&#xff0c;一是做矩阵题目的时候就发现这三货经常绑在一起&#xff0c;让人想去探寻其中奥秘&#xff1b;另一就是今天学了向量组的秩&#xff0c;让我想起来了之前遗留…

初阶数据结构(六)队列的介绍与实现

&#x1f493;博主csdn个人主页&#xff1a;小小unicorn&#x1f493; ⏩专栏分类&#xff1a;C &#x1f69a;代码仓库&#xff1a;小小unicorn的学习足迹&#x1f69a; &#x1f339;&#x1f339;&#x1f339;关注我带你学习编程知识 栈 队列的介绍队列的概念&#xff1a;队…

H5商城公众号商城系统源码 积分兑换商城系统独立后台

网购商城系统源码 积分兑换商城系统源码 独立后台附教程 测试环境&#xff1a;NginxPHP7.0MySQL5.6thinkphp伪静态

剑指 Offer 43. 1~n 整数中 1 出现的次数

目录 ​编辑 一&#xff0c;问题描述 二&#xff0c;例子 三&#xff0c;题目接口 四&#xff0c;题目解答 1&#xff0c;暴力解法 2.规律解法 总结&#xff1a; 代码&#xff1a; 一&#xff0c;问题描述 输入一个整数 n &#xff0c;求1&#xff5e;n这n个整数的十进…

2023高教社杯数学建模思路 - 复盘:人力资源安排的最优化模型

文章目录 0 赛题思路1 描述2 问题概括3 建模过程3.1 边界说明3.2 符号约定3.3 分析3.4 模型建立3.5 模型求解 4 模型评价与推广5 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 描述 …