【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论

文章目录

  • 引言
  • 一、回顾
  • 二、梳理
    • 齐次线性方程组
    • 非齐次线性方程组
  • 写在最后


引言

两个原因让我想写这篇文章,一是做矩阵题目的时候就发现这三货经常绑在一起,让人想去探寻其中奥秘;另一就是今天学了向量组的秩,让我想起来了之前遗留下来的一个问题:到底存不存在系数矩阵的秩和增广矩阵的秩之差比 1 大的情况?可能这个问题有点抽象,不过看了下面的具体说明应该就能理解了。


一、回顾

问题起因是这样,我在写行列式的文章中关于克莱姆法则应用的说法是这样的:

在这里插入图片描述
有读者建议,把方程组无解的情况别写成 r ( A ) ≠ r ( A ‾ ) r(A) \ne r(\overline{A}) r(A)=r(A) ,而写成 r ( A ) + 1 = r ( A ‾ ) r(A) +1 = r(\overline{A}) r(A)+1=r(A) . 我当时还未复习到方程组和向量部分,有这样的疑问:为什么非得是相差 1 ,我如果 A A A 有很多行为 0 ,增广矩阵的秩不就可以比系数矩阵大不止 1 吗?

我当时隐约感觉是行秩和列秩模糊的问题。一方面矩阵中,我们比较常用的是初等行变换,忽视了列变换以及列秩,另一方面,列秩在方阵中和行秩是一样的。

起初我也是认为,列秩没什么用的,直到学到了向量这一部分。由于一般我们指的向量是列向量,那么由一个向量组构成的矩阵,自然考虑的是列秩。

因此我们针对一个一般性的 m × n m \times n m×n 矩阵或 n n n m m m 维的向量组进行梳理,请看下文。


二、梳理

对于一般齐次线性方程组:

在这里插入图片描述

以及一般非齐次线性方程组:

在这里插入图片描述

α 1 = ( a 11 , a 21 , … , a m 1 ) T , α 2 = ( a 12 , a 22 , … , a m 2 ) T , … , α n = ( a 1 n , a 2 n , … , a m n ) T , b = ( b 1 , b 2 , … , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,b=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,,am1)T,α2=(a12,a22,,am2)T,,αn=(a1n,a2n,,amn)T,b=(b1,b2,,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( 1.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (1.1) x1α1+x2α2++xnαn=01.1 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( 2.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (2.1) x1α1+x2α2++xnαn=b2.1

X = ( x 1 , x 2 , … , x n ) T X=(x_1,x_2,\dots,x_n)^T X=(x1,x2,,xn)T ,矩阵 A = [ α 1 , α 2 , … , α n ] A=[\alpha_1,\alpha_2,\dots,\alpha_n] A=[α1,α2,,αn] ,即
在这里插入图片描述
则方程组(I)(II)可表示为如下矩阵形式: A X = 0 ( 1.2 ) AX=0(1.2) AX=01.2 A X = b ( 2.2 ) AX=b(2.2) AX=b2.2

齐次线性方程组

对于齐次线性方程组(I),它有 m m m 个约束方程, n n n 个未知数。首先我们应了解的是,不管方程个数和未知数个数多少,不可能无解,都是存在零解的。我们要讨论,就是讨论有没有非零解。我们分三种情况:

(一) m < n . m < n. m<n.

此时齐次线性方程组约束条件个数小于未知数,必有一个未知数无法受限制,如果那个不受限制的未知数取非零的话,就存在非零解。那么向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 必线性相关,则该向量组的秩 < n <n <n ,根据三秩相等性质, r ( A ) < n . r(A)<n. r(A)<n.

这种情况其实没什么好讨论的,因为肯定存在非零解,所以这也是为什么书上很少提及的情况吧。

(二) m = n . m=n. m=n.

此时就有讨论的必要了,因为方程组可能只有零解,也可能有非零解。

若齐次方程组只有零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性无关 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.

我们此时可以得出 ∣ A ∣ ≠ 0 |A| \ne 0 A=0,即因为系数矩阵是方阵且满秩。

若齐次方程组有非零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性相关 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.

为什么是小于 n n n 呢?因为构成系数矩阵的列向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn的秩小于 n n n ,根据三秩相等性质,该矩阵的秩亦小于 n n n

(三) m > n . m > n. m>n.

此时约束方程个数更多,不过不影响什么。系数矩阵的秩仍然是满足 r ( A ) ≤ n , r(A) \leq n, r(A)n, 同样有和第 2 种情况一样的的结论。

把这三种情况总结起来,其实还是第二种情况的结论。因此不论是否是方阵,未知数和方程的个数如何,都有如下结论:即

  • 齐次方程组只有零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性无关 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性相关 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.

非齐次线性方程组

对于非齐次线性方程组(II),它有 m m m 个约束方程, n n n 个未知数,右端常数向量为 b = ( b 1 , b 2 , … , b m ) \pmb{b=(b_1,b_2,\dots,b_m)} b=(b1,b2,,bm)b=(b1,b2,,bm)b=(b1,b2,,bm) ,增广矩阵为 A ‾ = [ A ∣ b ] . \overline{A}=[A|b]. A=[Ab].

我们从其对应的齐次线性方程组(I)出发,由于在齐次方程组中已经讨论了行数和列数的三种情况,因此在非齐次中不再分三种情况了,有兴趣同学可以也分三种情况去讨论,得到的结论应该也是一样的。

若(I)只有零解,根据上述结论,有向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性无关且 r ( A ) = n . r(A)=n. r(A)=n.

接下来我们讨论此时非齐次的情况,若非齐次线性方程组(II)无解,则向量 b \pmb{b} bbb 不能被无关的向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性表示,故增广矩阵的列向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,bα1,α2,,αn,bα1,α2,,αn,b 也线性无关,可得 r ( A ‾ ) = n + 1 r(\overline{A})=n+1 r(A)=n+1 . 若非齐方程组(II)有解,则向量 b \pmb{b} bbb 能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性表示,故增广矩阵的列向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,bα1,α2,,αn,bα1,α2,,αn,b 线性相关,可得 r ( A ‾ ) < n + 1 r(\overline{A})<n+1 r(A)<n+1 . 又因为向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性无关,故 r ( A ‾ ) = n = r ( A ) . r(\overline{A})=n=r(A). r(A)=n=r(A).

若方程组(II)对应的齐次方程组(I)有非零解,根据前一部分的结论,方程组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性相关且 r ( A ) < n . r(A)<n. r(A)<n.

我们讨论此时的非齐次方程组(II)的情况,若方程组(II)无解,则向量 b \pmb{b} bbb 不能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性表示,但由于向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 是线性相关的,故增广矩阵的列向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,bα1,α2,,αn,bα1,α2,,αn,b 线性相关,可得 r ( A ‾ ) < n + 1 r(\overline{A})<n+1 r(A)<n+1 r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

因为向量 b \pmb{b} bbb 不能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性表示,则向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,bα1,α2,,αn,bα1,α2,,αn,b 的秩比向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 多 1 ,即 r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.
O.O 这个还是可以直观理解的。向量组是一列一列的,加了一列不能被原来表示的列,肯定秩加了 1 嘛。

若方程组(II)有解,则向量 b \pmb{b} bbb 能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αnα1,α2,,αnα1,α2,,αn 线性表示,故 r ( A ‾ ) = r ( A ) < n . r(\overline{A})=r(A)<n. r(A)=r(A)<n.

如下图所示,讨论了所有情况下的秩的特征

在这里插入图片描述

总结一下可以得到如下一般性的结论:

  • 非齐次方程组有解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
  • 非齐次方程组无解 ⇔ \Leftrightarrow r ( A ‾ ) ≠ r ( A ) , r(\overline{A})\ne r(A), r(A)=r(A), r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

有解其实还可以再做讨论,就放在后面方程组那一章再来细说吧。


写在最后

看来还是自己疏忽了三秩相等的性质,才会产生开头那样的疑问。

现在也越来越认同,其实向量才是贯穿线性代数的重要工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/56642.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初阶数据结构(六)队列的介绍与实现

&#x1f493;博主csdn个人主页&#xff1a;小小unicorn&#x1f493; ⏩专栏分类&#xff1a;C &#x1f69a;代码仓库&#xff1a;小小unicorn的学习足迹&#x1f69a; &#x1f339;&#x1f339;&#x1f339;关注我带你学习编程知识 栈 队列的介绍队列的概念&#xff1a;队…

H5商城公众号商城系统源码 积分兑换商城系统独立后台

网购商城系统源码 积分兑换商城系统源码 独立后台附教程 测试环境&#xff1a;NginxPHP7.0MySQL5.6thinkphp伪静态

剑指 Offer 43. 1~n 整数中 1 出现的次数

目录 ​编辑 一&#xff0c;问题描述 二&#xff0c;例子 三&#xff0c;题目接口 四&#xff0c;题目解答 1&#xff0c;暴力解法 2.规律解法 总结&#xff1a; 代码&#xff1a; 一&#xff0c;问题描述 输入一个整数 n &#xff0c;求1&#xff5e;n这n个整数的十进…

2023高教社杯数学建模思路 - 复盘:人力资源安排的最优化模型

文章目录 0 赛题思路1 描述2 问题概括3 建模过程3.1 边界说明3.2 符号约定3.3 分析3.4 模型建立3.5 模型求解 4 模型评价与推广5 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 描述 …

异侠的CSDN笔记目录

文章目录 B站雷神B站黑马其他零散记录MyBatis 及其 Plus常用工具类线程 & 网络编程过滤器监听器Listener会话Session异步请求 AJAX B站雷神 基础知识 如何创建项目 快速创建项目 自动配置原理 容器功能 小技巧 yaml用法 web开发简单功能 数据响应与内容协商模板引擎 …

1. 卷积原理

① 卷积核不停的在原图上进行滑动&#xff0c;对应元素相乘再相加。 ② 下图为每次滑动移动1格&#xff0c;然后再利用原图与卷积核上的数值进行计算得到缩略图矩阵的数据&#xff0c;如下图右所示。 import torch import torch.nn.functional as Finput torch.tensor([[1, 2…

mysql并行效率提升

下面是一个并行读取mysql数据库表的测试程序&#xff0c;测试结果发现&#xff0c;读取10个表&#xff0c;1个个读取&#xff0c;和并行读取10个&#xff0c;效率一样&#xff0c;甚至并行读取还慢很多&#xff0c;这是为什么&#xff1f; con get_db_conn() results {} poo…

2023.8 - java - 数组

声明数组变量 首先必须声明数组变量&#xff0c;才能在程序中使用数组。下面是声明数组变量的语法&#xff1a; dataType[] arrayRefVar; // 首选的方法或dataType arrayRefVar[]; // 效果相同&#xff0c;但不是首选方法int[] a {1,2,3};int b[] new int[10];TS:let a:…

布隆过滤器

目录 初识布隆过滤器使用布隆过滤器布隆过滤器如何实现布隆过滤器使用场景布隆过滤器存在问题解决策略 初识布隆过滤器 布隆过滤器&#xff08;Bloom Filter&#xff09;是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一…

【排序】快排的优化(三数取中)

三数取中 就是将整个数组分为两半&#xff0c;三个数&#xff08;头、尾、中间&#xff09;的第二大的数字和 left 位置的数字相交换&#xff0c;可以避免排一个有序的数组从而出现单分支树的情况。 如果每次都找了一个最小的值作为基准值&#xff0c;那就会导致这个结点没有左…

具有优异导电性能且抑制了准饱和效应的1200V 4H-SiC沟槽MOSFET

标题&#xff1a;1200V 4H-SiC trench MOSFET with superior figure of merit and suppressed quasi-saturation effect 摘要 本文提出一种具有部分被埋层n区包围的p屏蔽区的优异性能(FoM)1200V 4H-SiC沟槽MOSFET。在准饱和(QS)状态下&#xff0c;埋层n区抑制由p屏蔽区形成的耗…

IPD流程中,TR2评审的内容、评审标准和评审要素

在IPD&#xff08;Integrated Product Development&#xff09;流程中&#xff0c;TR2&#xff08;Technical Review 2&#xff09;评审是项目开发过程中的一个重要里程碑评审&#xff0c;通常在项目的中期进行。TR2评审的目的是对项目的技术进展和实施情况进行评估和审查&…

异地访问Oracle数据库的解决方案:利用内网穿透实现PL/SQL远程连接的建议与步骤

文章目录 前言1. 数据库搭建2. 内网穿透2.1 安装cpolar内网穿透2.2 创建隧道映射 3. 公网远程访问4. 配置固定TCP端口地址4.1 保留一个固定的公网TCP端口地址4.2 配置固定公网TCP端口地址4.3 测试使用固定TCP端口地址远程Oracle ​ 小月糖糖主页 在强者的眼中&#xff0c;没有最…

【C++】特殊类的设计

特殊类的设计 前言正式开始设计一个类&#xff0c;不能被拷贝设计一个类&#xff0c;只能在堆上创建对象设计一个类&#xff0c;只能在栈上创建对象设计一个类&#xff0c;不能被继承设计一个类&#xff0c;只能创建一个对象(单例模式)饿汉模式懒汉模式总结 前言 点进来的同学…

c++ 学习之函数的默认参数

当在C中使用默认参数时&#xff0c;你可以在函数声明中为一个或多个参数指定默认值。这允许你在调用函数时&#xff0c;如果没有为这些参数提供实际值&#xff0c;编译器会使用你提供的默认值。这样可以在不同的情况下使用同一个函数&#xff0c;避免编写多个函数重载。 以下是…

第十一章 CUDA的NMS算子实战篇(上篇)

cuda教程目录 第一章 指针篇 第二章 CUDA原理篇 第三章 CUDA编译器环境配置篇 第四章 kernel函数基础篇 第五章 kernel索引(index)篇 第六章 kenel矩阵计算实战篇 第七章 kenel实战强化篇 第八章 CUDA内存应用与性能优化篇 第九章 CUDA原子(atomic)实战篇 第十章 CUDA流(strea…

农村农产品信息展示网站的设计与实现(论文+源码)_kaic

摘 要 随着软件技术的迅速发展,农产品信息展示的平台越来越多,传统的农产品显示方法将被计算机图形技术取代。这种网站技术主要把农产品的描述、农产品价格、农产品图片等内容&#xff0c;通过计算机网络的开发技术&#xff0c;在互联网上进行展示&#xff0c;然后通过计算机网…

Little Kernel代码学习笔记

目录 虚拟地址转换为物理地址内核启动Multiboot头部结构启动时的寄存器状态real_start段选择子初始化BSS段 页表转换设置CR4、CR3、EFER寄存器设置页表映射 初始化IDT&#xff0c;执行lk_main 虚拟地址转换为物理地址 // start.S#define PHYS_LOAD_ADDRESS (MEMBASE KERNEL_L…

多功能租车平台微信小程序源码 汽车租赁平台源码 摩托车租车平台源码 汽车租赁小程序源码

多功能租车平台微信小程序源码是一款用于汽车租赁的平台程序源码。它提供了丰富的功能&#xff0c;可以用于租赁各种类型的车辆&#xff0c;包括汽车和摩托车。 这个小程序源码可以帮助用户方便地租赁车辆。用户可以通过小程序浏览车辆列表&#xff0c;查看车辆的详细信息&…

npm 卸载 vuecli后还是存在

运行了npm uninstall vue-cli -g&#xff0c;之后是up to date in&#xff0c;然后vue -V&#xff0c;版本号一直都在&#xff0c;说明没有卸载掉 1、执行全局卸载命令 npm uninstall vue-cli -g 2、删除vue原始文件 查看文件位置&#xff0c;找到文件删掉 where vue 3、再…