从深度图里面导出边界

这次我们将学着怎么从一个深度图里面导出边界。我们对3种不同种类的点很感兴趣:物体的边框的点,阴影边框点,和面纱点(在障碍物边界和阴影边界),这是一个很典型的现象在通过雷达获取的3D深度。

下面是代码

/* \author Bastian Steder */
#include <iostream>
#include <boost/thread/thread.hpp>
#include <pcl/range_image/range_image.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/range_image_visualizer.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/features/range_image_border_extractor.h>
#include <pcl/console/parse.h>
typedef pcl::PointXYZ PointType;
// --------------------
// -----Parameters-----
// --------------------
float angular_resolution = 0.5f;
pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
bool setUnseenToMaxRange = false;
// --------------
// -----Help-----
// --------------
void 
printUsage (const char* progName)
{
std::cout << "\n\nUsage: "<<progName<<" [options] <scene.pcd>\n\n"
<< "Options:\n"
<< "-------------------------------------------\n"
<< "-r <float>   angular resolution in degrees (default "<<angular_resolution<<")\n"
<< "-c <int>     coordinate frame (default "<< (int)coordinate_frame<<")\n"
<< "-m           Treat all unseen points to max range\n"
<< "-h           this help\n"
<< "\n\n";
}
// --------------
// -----Main-----
// --------------
int 
main (int argc, char** argv)
{
// --------------------------------------
// -----Parse Command Line Arguments-----
// --------------------------------------
if (pcl::console::find_argument (argc, argv, "-h") >= 0)
{
printUsage (argv[0]);
return 0;
}
if (pcl::console::find_argument (argc, argv, "-m") >= 0)
{
setUnseenToMaxRange = true;
cout << "Setting unseen values in range image to maximum range readings.\n";
}
int tmp_coordinate_frame;
if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
{
coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";
}
if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)
cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n";
angular_resolution = pcl::deg2rad (angular_resolution);
// ------------------------------------------------------------------
// -----Read pcd file or create example point cloud if not given-----
// ------------------------------------------------------------------
pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);
pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;
Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());
std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
if (!pcd_filename_indices.empty ())
{
std::string filename = argv[pcd_filename_indices[0]];
if (pcl::io::loadPCDFile (filename, point_cloud) == -1)
{
cout << "Was not able to open file \""<<filename<<"\".\n";
printUsage (argv[0]);
return 0;
}
scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
point_cloud.sensor_origin_[1],
point_cloud.sensor_origin_[2])) *
Eigen::Affine3f (point_cloud.sensor_orientation_);
std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";
if (pcl::io::loadPCDFile(far_ranges_filename.c_str(), far_ranges) == -1)
std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";
}
else
{
cout << "\nNo *.pcd file given => Genarating example point cloud.\n\n";
for (float x=-0.5f; x<=0.5f; x+=0.01f)
{
for (float y=-0.5f; y<=0.5f; y+=0.01f)
{
PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;
point_cloud.points.push_back (point);
}
}
point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;
}
// -----------------------------------------------
// -----Create RangeImage from the PointCloud-----
// -----------------------------------------------
float noise_level = 0.0;
float min_range = 0.0f;
int border_size = 1;
boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage);
pcl::RangeImage& range_image = *range_image_ptr;   
range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
range_image.integrateFarRanges (far_ranges);
if (setUnseenToMaxRange)
range_image.setUnseenToMaxRange ();
// --------------------------------------------
// -----Open 3D viewer and add point cloud-----
// --------------------------------------------
pcl::visualization::PCLVisualizer viewer ("3D Viewer");
viewer.setBackgroundColor (1, 1, 1);
viewer.addCoordinateSystem (1.0f, "global");
pcl::visualization::PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 0, 0, 0);
viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");
//PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 150, 150, 150);
//viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
//viewer.setPointCloudRenderingProperties (PCL_VISUALIZER_POINT_SIZE, 2, "range image");
// -------------------------
// -----Extract borders-----
// -------------------------
pcl::RangeImageBorderExtractor border_extractor (&range_image);
pcl::PointCloud<pcl::BorderDescription> border_descriptions;
border_extractor.compute (border_descriptions);
// ----------------------------------
// -----Show points in 3D viewer-----
// ----------------------------------
pcl::PointCloud<pcl::PointWithRange>::Ptr border_points_ptr(new pcl::PointCloud<pcl::PointWithRange>),
veil_points_ptr(new pcl::PointCloud<pcl::PointWithRange>),
shadow_points_ptr(new pcl::PointCloud<pcl::PointWithRange>);
pcl::PointCloud<pcl::PointWithRange>& border_points = *border_points_ptr,
& veil_points = * veil_points_ptr,
& shadow_points = *shadow_points_ptr;
for (int y=0; y< (int)range_image.height; ++y)
{
for (int x=0; x< (int)range_image.width; ++x)
{
if (border_descriptions.points[y*range_image.width + x].traits[pcl::BORDER_TRAIT__OBSTACLE_BORDER])
border_points.points.push_back (range_image.points[y*range_image.width + x]);
if (border_descriptions.points[y*range_image.width + x].traits[pcl::BORDER_TRAIT__VEIL_POINT])
veil_points.points.push_back (range_image.points[y*range_image.width + x]);
if (border_descriptions.points[y*range_image.width + x].traits[pcl::BORDER_TRAIT__SHADOW_BORDER])
shadow_points.points.push_back (range_image.points[y*range_image.width + x]);
}
}
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> border_points_color_handler (border_points_ptr, 0, 255, 0);
viewer.addPointCloud<pcl::PointWithRange> (border_points_ptr, border_points_color_handler, "border points");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "border points");
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> veil_points_color_handler (veil_points_ptr, 255, 0, 0);
viewer.addPointCloud<pcl::PointWithRange> (veil_points_ptr, veil_points_color_handler, "veil points");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "veil points");
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> shadow_points_color_handler (shadow_points_ptr, 0, 255, 255);
viewer.addPointCloud<pcl::PointWithRange> (shadow_points_ptr, shadow_points_color_handler, "shadow points");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "shadow points");
//-------------------------------------
// -----Show points on range image-----
// ------------------------------------
pcl::visualization::RangeImageVisualizer* range_image_borders_widget = NULL;
range_image_borders_widget =
pcl::visualization::RangeImageVisualizer::getRangeImageBordersWidget (range_image, -std::numeric_limits<float>::infinity (), std::numeric_limits<float>::infinity (), false,
border_descriptions, "Range image with borders");
// -------------------------------------
//--------------------
// -----Main loop-----
//--------------------
while (!viewer.wasStopped ())
{
range_image_borders_widget->spinOnce ();
viewer.spinOnce ();
pcl_sleep(0.01);
}
}

代码解释

在刚开始,我们做命令行解析,从一个磁盘里面读取点云,我们创造了一个深度图并把它进行可视化。所有的这些步骤在"Range Image Visualization"里面有讲。

这里只有一小点偏差。为了导出边缘信息,我们要区别出无法到的深度点和超出观察范围之外的深度点。接着我们标记一个边框,观察不到的点不用标记。因此提供一些测量参数是很重要的。我们将找到一个额外的pcd文件包含如下的值。

std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";
if (pcl::io::loadPCDFile(far_ranges_filename.c_str(), far_ranges) == -1)
std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";

他们等一下将融入深度图里面

range_image.integrateFarRanges (far_ranges);

如果这些值没有提供,命令行参数-m将被用来赋值,所有不能观测到地点都被认为很远距离的点。

if (setUnseenToMaxRange)
range_image.setUnseenToMaxRange ();

接下去我们将来到与边缘导出相关的部分

pcl::RangeImageBorderExtractor border_extractor (&range_image);
pcl::PointCloud<pcl::BorderDescription> border_descriptions;
border_extractor.compute (border_descriptions);

上面将会创建RangeImageBorderExtractor这个类,给一个深度图,计算边缘信息,并把它存在border_descriptions里面。

最后 ,viewer.addCoordinateSystem (1.0f, "global");可能会出现错误,把代码改成viewer.addCoordinateSystem (1.0f);

直接运行它

/range_image_border_extraction -m

使用一个点云文件

./range_image_border_extraction <point_cloud.pcd>

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566194.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

隐式形状模型

在这次我们将学会隐式形状模型算法通过pcl::ism::ImplicitShapeModel这个类来实现。这个算法是把Hough转换和特征近似包进行结合。有训练集&#xff0c;这个算法将计算一个确定的模型用来预测一个物体的中心。 这个算法由两部分组成&#xff0c;第一部分是训练&#xff0c;第二…

3D物体识别的假设检验

3D物体识别的假设验证 这次目的在于解释如何做3D物体识别通过验证模型假设在聚类里面。在描述器匹配后&#xff0c;这次我们将运行某个相关组算法在PCL里面为了聚类点对点相关性的集合&#xff0c;决定假设物体在场景里面的实例。在这个假定里面&#xff0c;全局假设验证算法将…

怎么样递增的注册成对的点云

这次我们将使用Iterative Closest Point algorithm来递增的注册一系列的点云。 这个主意来自于把所有的点云转换成第一个点云的框架&#xff0c;通过找到每个连续点云间最好的装换&#xff0c;并且计算整个点云的转换。 你的数据集应该由重新排列的&#xff0c;在一个相同的框…

qt入门

&#xfeff;&#xfeff;qt入门 1.首先我们先创建一个qt的空项目 1.这会生成两个文件 xx.pro xx.pro.user xx.pro文件是qt的工程文件&#xff0c;有点类似于vc的prj文件&#xff0c;或者sln文件。xx.pro.user是这个当前环境下的工程文件。(移植的时候这个文件没啥用) 以…

qt输入框

&#xfeff;&#xfeff;qt里面的输入框是QLineEdit这个类来实现的。 下面是代码 /* 应用程序抽象类 */ #include <QApplication>/*窗口类*/ #include <QWidget> #include <QCompleter> #include <QLineEdit>int main(int argc, char* argv[]) {QAp…

qt坐标系统与布局的简单入门

&#xfeff;&#xfeff;qt坐标系统 qt坐标系统比较简单 button.setGeometry(20,20,100,100); 上面的代码把按钮显示为父窗口的20,20处宽度为100&#xff0c;高度为100 接下去是布局 qt里面布局需要加入<QLayout.h>这个头文件。 qt里面垂直布局 qt里面的垂直布局…

qt控件基本应用

Qt里面有很多控件&#xff0c;让我们来看一些常用控件。 首先是对pro文件的配置 HEADERS \ MyWidget.h SOURCES \ MyWidget.cpp QTwidgets gui CONFIG c11 因为要用到lambda所以要加一个CONFIGc11 下面是MyWidget.h #ifndef MYWIDGET_H #define MYWIDGET_H#include &…

数据结构之算法特性及分类

数据结构之算法特性及分类 算法的特性 1.通用性。2.有效性。3.确定性4.有穷性。基本算法分类 1.穷举法顺序查找K值2.回溯,搜索八皇后&#xff0c;树和图遍历3.递归分治二分查找K值&#xff0c;快速排序&#xff0c;归并排序。4.贪心法Huffman编码树&#xff0c;最短路Dijkstra…

Python数模笔记-模拟退火算法(4)旅行商问题

1、旅行商问题(Travelling salesman problem, TSP) 旅行商问题是经典的组合优化问题&#xff0c;要求找到遍历所有城市且每个城市只访问一次的最短旅行路线&#xff0c;即对给定的正权完全图求其总权重最小的Hamilton回路&#xff1a;设有 n个城市和距离矩阵 D[dij]&#xff0…

神经网络概述

神经网络概述 以监督学习为例&#xff0c;假设我们有训练样本集 &#xff0c;那么神经网络算法能够提供一种复杂且非线性的假设模型 &#xff0c;它具有参数 &#xff0c;可以以此参数来拟合我们的数据。 为了描述神经网络&#xff0c;我们先从最简单的神经网络讲起&#x…

Python数模笔记-StatsModels 统计回归(2)线性回归

1、背景知识 1.1 插值、拟合、回归和预测 插值、拟合、回归和预测&#xff0c;都是数学建模中经常提到的概念&#xff0c;而且经常会被混为一谈。 插值&#xff0c;是在离散数据的基础上补插连续函数&#xff0c;使得这条连续曲线通过全部给定的离散数据点。 插值是离散函数…

Python数模笔记-StatsModels 统计回归(3)模型数据的准备

1、读取数据文件 回归分析问题所用的数据都是保存在数据文件中的&#xff0c;首先就要从数据文件读取数据。 数据文件的格式很多&#xff0c;最常用的是 .csv&#xff0c;.xls 和 .txt 文件&#xff0c;以及 sql 数据库文件的读取 。 欢迎关注 Youcans 原创系列&#xff0c;每…

神经网络反向传导算法

假设我们有一个固定样本集 &#xff0c;它包含 个样例。我们可以用批量梯度下降法来求解神经网络。具体来讲&#xff0c;对于单个样例 &#xff0c;其代价函数为&#xff1a; 这是一个&#xff08;二分之一的&#xff09;方差代价函数。给定一个包含 个样例的数据集&#xff…

Python数模笔记-StatsModels 统计回归(4)可视化

1、如何认识可视化&#xff1f; 图形总是比数据更加醒目、直观。解决统计回归问题&#xff0c;无论在分析问题的过程中&#xff0c;还是在结果的呈现和发表时&#xff0c;都需要可视化工具的帮助和支持。  欢迎关注 Youcans 原创系列&#xff0c;每周更新数模笔记 Python数…

梯度检验与高级优化

众所周知&#xff0c;反向传播算法很难调试得到正确结果&#xff0c;尤其是当实现程序存在很多难于发现的bug时。举例来说&#xff0c;索引的缺位错误&#xff08;off-by-one error&#xff09;会导致只有部分层的权重得到训练&#xff0c;再比如忘记计算偏置项。这些错误会使你…

Python数模笔记-Sklearn (1)介绍

1、SKlearn 是什么 Sklearn&#xff08;全称 SciKit-Learn&#xff09;&#xff0c;是基于 Python 语言的机器学习工具包。 Sklearn 主要用Python编写&#xff0c;建立在 Numpy、Scipy、Pandas 和 Matplotlib 的基础上&#xff0c;也用 Cython编写了一些核心算法来提高性能。…

自编码算法与稀疏性

目前为止&#xff0c;我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中&#xff0c;训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合 &#xff0c;其中 。自编码神经网络是一种无监督学习算法&#xff0c;它使用了反向传播算法&#…

Python数模笔记-Sklearn(2)聚类分析

1、分类的分类 分类的分类&#xff1f;没错&#xff0c;分类也有不同的种类&#xff0c;而且在数学建模、机器学习领域常常被混淆。 首先我们谈谈有监督学习&#xff08;Supervised learning&#xff09;和无监督学习&#xff08;Unsupervised learning&#xff09;&#xff…

可视化自编码器训练结果

训练完&#xff08;稀疏&#xff09;自编码器&#xff0c;我们还想把这自编码器学到的函数可视化出来&#xff0c;好弄明白它到底学到了什么。我们以在1010图像&#xff08;即n100&#xff09;上训练自编码器为例。在该自编码器中&#xff0c;每个隐藏单元i对如下关于输入的函数…