隐式形状模型

在这次我们将学会隐式形状模型算法通过pcl::ism::ImplicitShapeModel这个类来实现。这个算法是把Hough转换和特征近似包进行结合。有训练集,这个算法将计算一个确定的模型用来预测一个物体的中心。

这个算法由两部分组成,第一部分是训练,第二部分是物体识别。它有以下6步:

1.先发现特征点。这只是一个训练点云的简化。在这个步骤里面所有的点云都将被简化,通过体元栅格这个途径。余下来的点就是特征点。

2.对特征点用FPFH进行预测。

3.通过k-means这个算法进行聚类。

4.计算每一个实例里面的对中心的方向。

5.对每一个视觉信息,数学权重将会被计算。

6.每一个特征点的权重将会被计算。

我们在训练的过程结束以后,接下来就是对象搜索的进程。

1.特征点检测。

2.每个点云特征点的特征检测。

3.对于每个特征搜索最近的视觉信息。

4.对于每一个特征:

对于每一个实例:

     对相应的方向进行决策。

5.前面的步骤给了我们一个方向集用来预测中心与能量。

上面的步骤很多涉及机器学习之类的,大致明白那个过程即可

代码部分:

第一步我们需要点云的训练集。在下面是一些可以用的训练集.

Cat (train)

Horse (train)

          Lioness (train)

          Michael (train)

Wolf (train)

用来检测的点云:

                       Cat

                       Horse

                        Lioness

                        Michael

                         Wolf

 

下面是代码

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/feature.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/features/fpfh.h>
#include <pcl/features/impl/fpfh.hpp>
#include <pcl/recognition/implicit_shape_model.h>
#include <pcl/recognition/impl/implicit_shape_model.hpp>
int
main (int argc, char** argv)
{
if (argc == 0 || argc % 2 == 0)
return (-1);
unsigned int number_of_training_clouds = (argc - 3) / 2;
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimator;
normal_estimator.setRadiusSearch (25.0);
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> training_clouds;
std::vector<pcl::PointCloud<pcl::Normal>::Ptr> training_normals;
std::vector<unsigned int> training_classes;
for (unsigned int i_cloud = 0; i_cloud < number_of_training_clouds - 1; i_cloud++)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr tr_cloud(new pcl::PointCloud<pcl::PointXYZ> ());
if ( pcl::io::loadPCDFile <pcl::PointXYZ> (argv[i_cloud * 2 + 1], *tr_cloud) == -1 )
return (-1);
pcl::PointCloud<pcl::Normal>::Ptr tr_normals = (new pcl::PointCloud<pcl::Normal>)->makeShared ();
normal_estimator.setInputCloud (tr_cloud);
normal_estimator.compute (*tr_normals);
unsigned int tr_class = static_cast<unsigned int> (strtol (argv[i_cloud * 2 + 2], 0, 10));
training_clouds.push_back (tr_cloud);
training_normals.push_back (tr_normals);
training_classes.push_back (tr_class);
}
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<153> >::Ptr fpfh
(new pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<153> >);
fpfh->setRadiusSearch (30.0);
pcl::Feature< pcl::PointXYZ, pcl::Histogram<153> >::Ptr feature_estimator(fpfh);
pcl::ism::ImplicitShapeModelEstimation<153, pcl::PointXYZ, pcl::Normal> ism;
ism.setFeatureEstimator(feature_estimator);
ism.setTrainingClouds (training_clouds);
ism.setTrainingNormals (training_normals);
ism.setTrainingClasses (training_classes);
ism.setSamplingSize (2.0f);
pcl::ism::ImplicitShapeModelEstimation<153, pcl::PointXYZ, pcl::Normal>::ISMModelPtr model = boost::shared_ptr<pcl::features::ISMModel>
(new pcl::features::ISMModel);
ism.trainISM (model);
std::string file ("trained_ism_model.txt");
model->saveModelToFile (file);
model->loadModelFromfile (file);
unsigned int testing_class = static_cast<unsigned int> (strtol (argv[argc - 1], 0, 10));
pcl::PointCloud<pcl::PointXYZ>::Ptr testing_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
if ( pcl::io::loadPCDFile <pcl::PointXYZ> (argv[argc - 2], *testing_cloud) == -1 )
return (-1);
pcl::PointCloud<pcl::Normal>::Ptr testing_normals = (new pcl::PointCloud<pcl::Normal>)->makeShared ();
normal_estimator.setInputCloud (testing_cloud);
normal_estimator.compute (*testing_normals);
boost::shared_ptr<pcl::features::ISMVoteList<pcl::PointXYZ> > vote_list = ism.findObjects (
model,
testing_cloud,
testing_normals,
testing_class);
double radius = model->sigmas_[testing_class] * 10.0;
double sigma = model->sigmas_[testing_class];
std::vector<pcl::ISMPeak, Eigen::aligned_allocator<pcl::ISMPeak> > strongest_peaks;
vote_list->findStrongestPeaks (strongest_peaks, testing_class, radius, sigma);
pcl::PointCloud <pcl::PointXYZRGB>::Ptr colored_cloud = (new pcl::PointCloud<pcl::PointXYZRGB>)->makeShared ();
colored_cloud->height = 0;
colored_cloud->width = 1;
pcl::PointXYZRGB point;
point.r = 255;
point.g = 255;
point.b = 255;
for (size_t i_point = 0; i_point < testing_cloud->points.size (); i_point++)
{
point.x = testing_cloud->points[i_point].x;
point.y = testing_cloud->points[i_point].y;
point.z = testing_cloud->points[i_point].z;
colored_cloud->points.push_back (point);
}
colored_cloud->height += testing_cloud->points.size ();
point.r = 255;
point.g = 0;
point.b = 0;
for (size_t i_vote = 0; i_vote < strongest_peaks.size (); i_vote++)
{
point.x = strongest_peaks[i_vote].x;
point.y = strongest_peaks[i_vote].y;
point.z = strongest_peaks[i_vote].z;
colored_cloud->points.push_back (point);
}
colored_cloud->height += strongest_peaks.size ();
pcl::visualization::CloudViewer viewer ("Result viewer");
viewer.showCloud (colored_cloud);
while (!viewer.wasStopped ())
{
}
return (0);
}

1.首先加载用于训练的点云

  for (unsigned int i_cloud = 0; i_cloud < number_of_training_clouds - 1; i_cloud++)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr tr_cloud(new pcl::PointCloud<pcl::PointXYZ> ());
if ( pcl::io::loadPCDFile <pcl::PointXYZ> (argv[i_cloud * 2 + 1], *tr_cloud) == -1 )
return (-1);
pcl::PointCloud<pcl::Normal>::Ptr tr_normals = (new pcl::PointCloud<pcl::Normal>)->makeShared ();
normal_estimator.setInputCloud (tr_cloud);
normal_estimator.compute (*tr_normals);
unsigned int tr_class = static_cast<unsigned int> (strtol (argv[i_cloud * 2 + 2], 0, 10));
training_clouds.push_back (tr_cloud);
training_normals.push_back (tr_normals);
training_classes.push_back (tr_class);
}

2.创建特征评估器的实例。

 pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<153> >::Ptr fpfh
(new pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<153> >);
fpfh->setRadiusSearch (30.0);
pcl::Feature< pcl::PointXYZ, pcl::Histogram<153> >::Ptr feature_estimator(fpfh);

3.创建pcl::ism::ImplicitShapeModeEstimation的实例。

  ism.setFeatureEstimator(feature_estimator);
ism.setTrainingClouds (training_clouds);
ism.setTrainingNormals (training_normals);
ism.setTrainingClasses (training_classes);
ism.setSamplingSize (2.0f);

4.这个实例将输入训练集和特征预估器

pcl::ism::ImplicitShapeModelEstimation<153, pcl::PointXYZ, pcl::Normal>::ISMModelPtr model = boost::shared_ptr<pcl::features::ISMModel>
(new pcl::features::ISMModel);
ism.trainISM (model);

上面这些将简化训练过程的启动

5.把训练模型存到文件里面为了使代码复用

  std::string file ("trained_ism_model.txt");
model->saveModelToFile (file);

6.从文件里面加载模型。

model->loadModelFromfile (file);

7.分类操作的点云和法线也需要训练的过程。

  unsigned int testing_class = static_cast<unsigned int> (strtol (argv[argc - 1], 0, 10));
pcl::PointCloud<pcl::PointXYZ>::Ptr testing_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
if ( pcl::io::loadPCDFile <pcl::PointXYZ> (argv[argc - 2], *testing_cloud) == -1 )
return (-1);
pcl::PointCloud<pcl::Normal>::Ptr testing_normals = (new pcl::PointCloud<pcl::Normal>)->makeShared ();
normal_estimator.setInputCloud (testing_cloud);
normal_estimator.compute (*testing_normals);

8.启动分类的进程。代码将会告诉算法去找testing_class类型的物体,在给定的testing_cloud这个点云里面。注意算法将会使用任何你放进去进行训练的模型。在分类操作以后,一列的决策将会以pcl::ism::ISMVoteList这个形式返回。

  double radius = model->sigmas_[testing_class] * 10.0;
double sigma = model->sigmas_[testing_class];
std::vector<pcl::ISMPeak, Eigen::aligned_allocator<pcl::ISMPeak> > strongest_peaks;
vote_list->findStrongestPeaks (strongest_peaks, testing_class, radius, sigma);

上面的代码将会找到决策里面的最好的峰值。

运行下面的代码

./implicit_shape_model
ism_train_cat.pcd      0
ism_train_horse.pcd    1
ism_train_lioness.pcd  2
ism_train_michael.pcd  3
ism_train_wolf.pcd     4
ism_test_cat.pcd       0

最后的参数是你要检测的点云和你感兴趣的类别。(比如猫)

~接下去你会看到

 

红点表示物体的中心。

如果你想要可视化决策的过程,你就会看到如下的东西。蓝色是决策点

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566192.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3D物体识别的假设检验

3D物体识别的假设验证 这次目的在于解释如何做3D物体识别通过验证模型假设在聚类里面。在描述器匹配后&#xff0c;这次我们将运行某个相关组算法在PCL里面为了聚类点对点相关性的集合&#xff0c;决定假设物体在场景里面的实例。在这个假定里面&#xff0c;全局假设验证算法将…

怎么样递增的注册成对的点云

这次我们将使用Iterative Closest Point algorithm来递增的注册一系列的点云。 这个主意来自于把所有的点云转换成第一个点云的框架&#xff0c;通过找到每个连续点云间最好的装换&#xff0c;并且计算整个点云的转换。 你的数据集应该由重新排列的&#xff0c;在一个相同的框…

qt入门

&#xfeff;&#xfeff;qt入门 1.首先我们先创建一个qt的空项目 1.这会生成两个文件 xx.pro xx.pro.user xx.pro文件是qt的工程文件&#xff0c;有点类似于vc的prj文件&#xff0c;或者sln文件。xx.pro.user是这个当前环境下的工程文件。(移植的时候这个文件没啥用) 以…

新手博客,开博立言_Youcans2021

这是我的第一篇博客。 今后我会将我的学习心得和总结在这里发布&#xff0c;与大家共享&#xff0c;共勉。

qt输入框

&#xfeff;&#xfeff;qt里面的输入框是QLineEdit这个类来实现的。 下面是代码 /* 应用程序抽象类 */ #include <QApplication>/*窗口类*/ #include <QWidget> #include <QCompleter> #include <QLineEdit>int main(int argc, char* argv[]) {QAp…

Python数模笔记-PuLP库(2)线性规划进阶

1、基于字典的创建规划问题 上篇中介绍了使用 LpVariable 对逐一定义每个决策变量&#xff0c;设定名称、类型和上下界&#xff0c;类似地对约束条件也需要逐一设置模型参数。在大规模的规划问题中&#xff0c;这样逐个定义变量和设置模型参数非常繁琐&#xff0c;效率很低。P…

qt坐标系统与布局的简单入门

&#xfeff;&#xfeff;qt坐标系统 qt坐标系统比较简单 button.setGeometry(20,20,100,100); 上面的代码把按钮显示为父窗口的20,20处宽度为100&#xff0c;高度为100 接下去是布局 qt里面布局需要加入<QLayout.h>这个头文件。 qt里面垂直布局 qt里面的垂直布局…

Python数模笔记-PuLP库(1)线性规划入门

1、什么是线性规划 线性规划&#xff08;Linear programming&#xff09;&#xff0c;在线性等式或不等式约束条件下求解线性目标函数的极值问题&#xff0c;常用于解决资源分配、生产调度和混合问题。例如&#xff1a; max fx 2*x1 3*x2 - 5*x3 s.t. x1 3*x2 x3 < 1…

qt控件基本应用

Qt里面有很多控件&#xff0c;让我们来看一些常用控件。 首先是对pro文件的配置 HEADERS \ MyWidget.h SOURCES \ MyWidget.cpp QTwidgets gui CONFIG c11 因为要用到lambda所以要加一个CONFIGc11 下面是MyWidget.h #ifndef MYWIDGET_H #define MYWIDGET_H#include &…

Python数模笔记-PuLP库(3)线性规划实例

本节以一个实际数学建模案例&#xff0c;讲解 PuLP 求解线性规划问题的建模与编程。 1、问题描述 某厂生产甲乙两种饮料&#xff0c;每百箱甲饮料需用原料6千克、工人10名&#xff0c;获利10万元&#xff1b;每百箱乙饮料需用原料5千克、工人20名&#xff0c;获利9万元。 今工…

深度学习资料整理

本文是转载了别人的博客&#xff0c;然后还加上了自己到淘宝上买的百度云盘资料(还包括一些数据挖掘&#xff0c;大数据之类的教程)。 编者按&#xff1a;本文收集了百来篇关于机器学习和深度学习的资料&#xff0c;含各种文档&#xff0c;视频&#xff0c;源码等。而且原文也会…

Python数模笔记-模拟退火算法(1)多变量函数优化

1、模拟退火算法 模拟退火算法借鉴了统计物理学的思想&#xff0c;是一种简单、通用的启发式优化算法&#xff0c;并在理论上具有概率性全局优化性能&#xff0c;因而在科研和工程中得到了广泛的应用。 退火是金属从熔融状态缓慢冷却、最终达到能量最低的平衡态的过程。模拟退…

Python数模笔记-模拟退火算法(2)约束条件的处理

1、最优化与线性规划 最优化问题的三要素是决策变量、目标函数和约束条件。 线性规划&#xff08;Linear programming&#xff09;&#xff0c;是研究线性约束条件下线性目标函数的极值问题的优化方法&#xff0c;常用于解决利用现有的资源得到最优决策的问题。 简单的线性规…

Python数模笔记-模拟退火算法(3)整数规划问题

1、整数规划问题 整数规划问题在工业、经济、国防、医疗等各行各业应用十分广泛&#xff0c;是指规划中的变量&#xff08;全部或部分&#xff09;限制为整数&#xff0c;属于离散优化问题&#xff08;Discrete Optimization&#xff09;。 线性规划问题的最优解可能是分数或小…

数据结构之算法特性及分类

数据结构之算法特性及分类 算法的特性 1.通用性。2.有效性。3.确定性4.有穷性。基本算法分类 1.穷举法顺序查找K值2.回溯,搜索八皇后&#xff0c;树和图遍历3.递归分治二分查找K值&#xff0c;快速排序&#xff0c;归并排序。4.贪心法Huffman编码树&#xff0c;最短路Dijkstra…

Python数模笔记-模拟退火算法(4)旅行商问题

1、旅行商问题(Travelling salesman problem, TSP) 旅行商问题是经典的组合优化问题&#xff0c;要求找到遍历所有城市且每个城市只访问一次的最短旅行路线&#xff0c;即对给定的正权完全图求其总权重最小的Hamilton回路&#xff1a;设有 n个城市和距离矩阵 D[dij]&#xff0…

神经网络概述

神经网络概述 以监督学习为例&#xff0c;假设我们有训练样本集 &#xff0c;那么神经网络算法能够提供一种复杂且非线性的假设模型 &#xff0c;它具有参数 &#xff0c;可以以此参数来拟合我们的数据。 为了描述神经网络&#xff0c;我们先从最简单的神经网络讲起&#x…

Python数模笔记-StatsModels 统计回归(1)简介

1、关于 StatsModels statsmodels&#xff08;http://www.statsmodels.org&#xff09;是一个Python库&#xff0c;用于拟合多种统计模型&#xff0c;执行统计测试以及数据探索和可视化。 欢迎关注 Youcans 原创系列&#xff0c;每周更新数模笔记 Python数模笔记-PuLP库 Pyth…

Python数模笔记-StatsModels 统计回归(2)线性回归

1、背景知识 1.1 插值、拟合、回归和预测 插值、拟合、回归和预测&#xff0c;都是数学建模中经常提到的概念&#xff0c;而且经常会被混为一谈。 插值&#xff0c;是在离散数据的基础上补插连续函数&#xff0c;使得这条连续曲线通过全部给定的离散数据点。 插值是离散函数…