【OpenCV 例程300篇】04. 用 matplotlib 显示图像(plt.imshow)

专栏地址:『youcans 的 OpenCV 例程300篇 - 总目录』
01. 图像的读取(cv2.imread)
02. 图像的保存(cv2.imwrite)
03. 图像的显示(cv2.imshow)
04. 用 matplotlib 显示图像(plt.imshow)


【youcans 的 OpenCV 例程300篇】04. 用 matplotlib 显示图像(plt.imshow)


函数 plt.imshow() 用于通过 matplotlib 库显示图像。

函数说明:

matplotlib.pyplot.imshow(img[, cmap])

OpenCV 使用 BGR 格式,matplotlib/PyQt 使用 RGB 格式。使用 matplotlib/PyQt 显示 openCV 图像,要将 BGR 格式转换为 RGB 格式:

# 图片格式转换:BGR(OpenCV) -> RGB(PyQt5)
imgRGB = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2RGB)

参数说明:

  • img:图像数据,nparray 多维数组,对于 openCV(BGR)格式图像要先进行格式转换
  • cmap:颜色图谱(colormap),默认为 RGB(A) 颜色空间
    • gray:灰度显示
    • hsv:hsv 颜色空间

注意事项:

  1. OpenCV 和 matplotlib 中的彩色图像都是 Numpy 多维数组。但 OpenCV 使用 BGR 格式,颜色分量按照蓝/绿/红的次序排列,而 matplotlib 使用 RGB 格式,颜色分量按照红/绿/蓝的次序排序。因此用 plt.imshow() 显示 OpenCV 彩色图像时,先要进行颜色空间转换,将Numpy 多维数组按照红/绿/蓝的次序排序。
  2. plt.imshow() 可以直接显示 OpenCV 灰度图像,不需要格式转换,但需要使用 cmap=‘gray’ 进行参数设置。
  3. plt.imshow() 可以使用 matplotlib 库中的各种方法绘图,如标题、坐标轴、插值等,详见 matploblib Document。
  4. PyQt5 也使用 RGB 格式,因此在 PyQt5 中显示 OpenCV 彩色图像时,也要进行颜色空间转换。

基本例程:

    # 1.10 图像显示(plt.imshow)imgFile = "../images/imgLena.tif"  # 读取文件的路径img1 = cv2.imread(imgFile, flags=1)  # flags=1 读取彩色图像(BGR)imgRGB = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)  # 图片格式转换:BGR(OpenCV) -> RGB(PyQt5)img2 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)  # 图片格式转换:BGR(OpenCV) -> Grayplt.rcParams['font.sans-serif'] = ['FangSong']  # 支持中文标签plt.subplot(221), plt.title("1. RGB 格式(mpl)"), plt.axis('off')plt.imshow(imgRGB)  # matplotlib 显示彩色图像(RGB格式)plt.subplot(222), plt.title("2. BGR 格式(OpenCV)"), plt.axis('off')plt.imshow(img1)    # matplotlib 显示彩色图像(BGR格式)plt.subplot(223), plt.title("3. 设置 Gray 参数"), plt.axis('off')plt.imshow(img2, cmap='gray')  # matplotlib 显示灰度图像,设置 Gray 参数plt.subplot(224), plt.title("4. 未设置 Gray 参数"), plt.axis('off')plt.imshow(img2)  # matplotlib 显示灰度图像,未设置 Gray 参数plt.show()

程序说明:

图 1 中 OpenCV 的 BGR 彩色图像已转换为 RGB 格式,彩色图像的颜色显示正常;
图 2 中 OpenCV 的 BGR 彩色图像格式未做转换,彩色图像的颜色显示异常;
图 3 中 plt.imshow() 设置 cmap=‘gray’,灰度图像的颜色显示正常;
图 4 中 plt.imshow() 未设置 cmap=‘gray’,灰度图像的颜色显示异常。

在这里插入图片描述


(本节完)


版权声明:
youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/125112487)
Copyright 2022 youcans, XUPT
Crated:2021-11-18
更多内容请见:>『youcans 的 OpenCV 例程300篇 - 总目录』(https://blog.csdn.net/youcans/article/details/125112487)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566068.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【OpenCV 例程300篇】05. 图像的属性(np.shape)

专栏地址:『youcans 的 OpenCV 例程 300 篇』 【OpenCV 例程300篇】05. 图像的属性(np.shape) OpenCV 中图像对象的数据结构是 ndarray 多维数组,因此 ndarray 数组的属性和操作方法也都适用于 OpenCV 的图像对象。 img.ndim&…

【OpenCV 例程300篇】06. 像素的编辑(img.itemset)

文章目录:『youcans 的 OpenCV 例程300篇 - 总目录』 【OpenCV 例程300篇】06. 像素的编辑(img.itemset) 像素是构成数字图像的基本单位,像素处理是图像处理的基本操作。 对像素的访问、修改,可以使用 Numpy 方法直接…

图片里的标志化的构造和执行

图片里的标志化的构造和执行 这是一篇解释在图片里面的进行标志化构造和执行的文章。你最好和这篇文章一起阅读 Symbolic API..标志构成 标志是我们想做的计算的描述。标志构造API生成计算图源来描述计算的需要。下面的图片显示了怎样我们组成标志来描述基本的计算。 mxnet.sy…

【OpenCV 例程300篇】07. 图像的创建(np.zeros)

专栏地址:『youcans 的 OpenCV 例程 300 篇』 【OpenCV 例程300篇】07. 图像的创建(np.zeros) OpenCV 中图像对象的数据结构是 ndarray 多维数组,因此可以用 Numpy 创建多维数组来生成图像。特别对于空白、黑色、白色、随机等特殊…

机器学习里面常用知识

每次手推公式就会遇见各种不会的,在网上搜了个总结的还不错的常用求导公式。。。继续更新中…… 一、基本线性代数 以下部分原文地址:http://blog.163.com/live_freely/blog/static/151142060201023154057339/ 在网上看到有人贴了如下求导公式&#xff1…

【OpenCV 例程300篇】09. 图像的裁剪(cv2.selectROI)

专栏地址:『youcans 的 OpenCV 例程 300 篇』 【OpenCV 例程300篇】09. 图像的裁剪(cv2.selectROI) 用 Numpy 的切片方法可以进行图像的裁剪,操作简单方便。 方法说明: retval img[y:yh, x:xw].copy() 对图像 img 裁…

【OpenCV 例程300篇】10. 图像的拼接(np.hstack)

3文章目录:『youcans 的 OpenCV 例程300篇 - 总目录』 【OpenCV 例程300篇】10. 图像的拼接(np.hstack) 用 Numpy 的数组堆叠方法可以进行图像的拼接,操作简单方便。 方法说明: retval numpy.hstack((img1, img2, ……

win下python和opencv安装

最简单粗暴的安装教程 1.先去下载3个文件pycharm(IDE),anaconda(集成库),opencv的whl文件 http://yun.baidu.com/share/link?shareid1022325066&uk1275716166 里面还有别的学习教程,包括opencv,numpy,matplotlib等。 2.把pycharm和an…

【OpenCV 例程300篇】11. 图像通道的拆分(cv2.split)

文章目录:『youcans 的 OpenCV 例程300篇 - 总目录』 【OpenCV 例程300篇】11. 图像通道的拆分(cv2.split) 函数 cv2.split() 将 3 通道 BGR 彩色图像分离为 B、G、R 单通道图像。 函数说明: cv2.split(img[, mv]) -> retval …

机器学习矩阵求导

矩阵求导好像读书的时候都没学过,因为讲矩阵的课程上不讲求导,讲求导的课又不提矩阵。如果从事机器学习方面的工作,那就一定会遇到矩阵求导的东西。维基百科上:http://en.wikipedia.org/wiki/Matrix_calculus , 根据Y与…

【OpenCV 例程300篇】12. 图像通道的合并(cv2.merge)

文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【OpenCV 例程300篇】12. 图像通道的合并(cv2.merge) 函数 cv2.merge() 将 B、G、R 单通道合并为 3 通道 BGR 彩色图像。 函数说明: cv2.merge(mv[, dst]) -> retval # BG…

机器学习向量化练习

机器学习向量化练习 在先前的练习里面,我们已经通过对自然图像完成了一个稀疏自编码的练习。在这次我们将通过向量化来使我们运行速度更快,并且我们将把它应用到手写数字里面。 数据下载 MNIST Dataset (Training Images)MNIST Dataset (Training Labe…

【OpenCV 例程200篇】13. 图像的加法运算(cv2.add)

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程 200 篇】13. 图像的加法运算(cv2.add) 函数 cv2.add() 用于图像的加法运算。 函数说明: …

【OpenCV 例程200篇】14. 图像与标量相加(cv2.add)

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程 200 篇】14. 图像与标量相加(cv2.add) 函数 cv2.add() 用于图像的加法运算。 函数说明: …

UFLDL之Softmax回归

Softmax回归 Contents [hide]1 简介2 代价函数3 Softmax回归模型参数化的特点4 权重衰减5 Softmax回归与Logistic 回归的关系6 Softmax 回归 vs. k 个二元分类器7 中英文对照8 中文译者 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模…

【OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程 200 篇】15. 图像的加权加法(cv2.addWeight) 函数 cv2.addWeight() 用于图像的加权加法运算。 函数说…

【OpenCV 例程200篇】16. 不同尺寸的图像加法

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程 200 篇】16. 不同尺寸的图像加法 函数 cv2.add() 用于图像的加法运算, 对两张相同大小和类型的图像进行加法运算&…

二维数据的白化处理

二维数据的白化处理 这篇博客实现起来比较简单,首先先去下载pca_2d.zip,然后打开pca_2d.m改代码,具体代码见下面close all%%%% Step 0: Load data% We have provided the code to load data from pcaData.txt into x.% x is a 2 * 45 matri…

【youcans 的图像处理学习课】4. 图像的叠加与混合

专栏地址:『youcans 的图像处理学习课』 文章目录:『youcans 的图像处理学习课 - 总目录』 【youcans 的图像处理学习课】4. 图像的叠加与混合 文章目录【youcans 的图像处理学习课】4. 图像的叠加与混合1. 图像的加法运算基本例程:1.22 图像…

PCA白化

自然图片的PCA白化 在这个练习里面我们将实现PCA和ZCA白化。首先先下载这个文件pca_exercise.zip, 然后我们解压它,并用matlab打开它,我们只需要更改pca_gen.m.这个文件。 然后把代码改成下面这个形式 %% %% Step 0a: Load data % Here we provide th…