【OpenCV 例程200篇】82. 频率域巴特沃斯低通滤波器

【OpenCV 例程200篇】82. 频率域巴特沃斯低通滤波器

欢迎关注 『OpenCV 例程200篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中


3.4 频率域巴特沃斯低通滤波器(BLPF)

截止频率位于距频率中心 D0D_0D0 处的 n 阶巴特沃斯(Butterworth)低通滤波器的传递函数为:
H(u,v)=11+[D(u,v)/D0]2nH(u,v) = \frac {1}{1+[D(u,v) / D_0]^{2n}} H(u,v)=1+[D(u,v)/D0]2n1

当 n 较大时,巴特沃斯低通滤波器 BLPF 可以逼近理想低通滤波器 ILPF 的特性;而当 n 较小时,巴特沃斯低通滤波器 BLPF 可以逼近高斯低通滤波器 GLPF 的特性,同时提供从低频到高频的平滑过渡。

巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。

在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减小,趋向负无穷大。巴特沃斯滤波器的频率特性曲线,无论在通带内还是阻带内都是频率的单调函数。因此,当通带的边界处满足指标要求时,通带内肯定会有裕量。所以,更有效的设计方法应该是将精确度均匀的分布在整个通带或阻带内,或者同时分布在两者之内。


例程 8.19:频率域巴特沃斯低通滤波器 (BLPF)

# OpenCVdemo08.py
# Demo08 of OpenCV
# 8. 图像的频率域滤波
# Copyright 2021 Youcans, XUPT
# Crated:2021-12-15# 8.19:频率域巴特沃斯低通滤波器 (BLPF)# (1) 读取原始图像# imgGray = cv2.imread("../images/imgLena.tif", flags=0)  # flags=0 读取为灰度图像imgGray = cv2.imread("../images/Fig0431.tif", flags=0)  # flags=0 读取为灰度图像imgFloat32 = np.float32(imgGray)  # 将图像转换成 float32rows, cols = imgGray.shape[:2]  # 图片的高度和宽度# (2) 中心化, centralized 2d array f(x,y) * (-1)^(x+y)mask = np.ones(imgGray.shape)mask[1::2, ::2] = -1mask[::2, 1::2] = -1fImage = imgFloat32 * mask  # f(x,y) * (-1)^(x+y)# (3) 快速傅里叶变换# dftImage = fft2Image(fImage)  # 快速傅里叶变换 (rPad, cPad, 2)rPadded = cv2.getOptimalDFTSize(rows)  # 最优 DFT 扩充尺寸cPadded = cv2.getOptimalDFTSize(cols)  # 用于快速傅里叶变换dftImage = np.zeros((rPadded, cPadded, 2), np.float32)  # 对原始图像进行边缘扩充dftImage[:rows, :cols, 0] = fImage  # 边缘扩充,下侧和右侧补0cv2.dft(dftImage, dftImage, cv2.DFT_COMPLEX_OUTPUT)  # 快速傅里叶变换dftAmp = cv2.magnitude(dftImage[:,:,0], dftImage[:,:,1])  # 傅里叶变换的幅度谱 (rPad, cPad)dftAmpLog = np.log(1.0 + dftAmp)  # 幅度谱对数变换,以便于显示dftAmpNorm = np.uint8(cv2.normalize(dftAmpLog, None, 0, 255, cv2.NORM_MINMAX))  # 归一化为 [0,255]minValue, maxValue, minLoc, maxLoc = cv2.minMaxLoc(dftAmp)  # 找到傅里叶谱最大值的位置plt.figure(figsize=(9, 6))# rows, cols = imgGray.shape[:2]  # 图片的高度和宽度u, v = np.mgrid[0:rPadded:1, 0:cPadded:1]D = np.sqrt(np.power((u-maxLoc[1]), 2) + np.power((v-maxLoc[0]), 2))D0 = [20, 40, 80]  # cut-off frequencyn = 2for k in range(3):# (4) 构建低通滤波器 传递函数# 巴特沃斯低通滤波 (Butterworth low pass filter)epsilon = 1e-8  # 防止被 0 除lpFilter = 1.0 / (1.0 + np.power(D / (D0[k] + epsilon), 2*n))# (5) 在频率域修改傅里叶变换: 傅里叶变换 点乘 低通滤波器dftLPfilter = np.zeros(dftImage.shape, dftImage.dtype)  # 快速傅里叶变换的尺寸(优化尺寸)for j in range(2):dftLPfilter[:rPadded, :cPadded, j] = dftImage[:rPadded, :cPadded, j] * lpFilter# (6) 对低通傅里叶变换 执行傅里叶逆变换,并只取实部idft = np.zeros(dftAmp.shape, np.float32)  # 快速傅里叶变换的尺寸(优化尺寸)cv2.dft(dftLPfilter, idft, cv2.DFT_REAL_OUTPUT + cv2.DFT_INVERSE + cv2.DFT_SCALE)# (7) 中心化, centralized 2d array g(x,y) * (-1)^(x+y)mask2 = np.ones(dftAmp.shape)mask2[1::2, ::2] = -1mask2[::2, 1::2] = -1idftCen = idft * mask2  # g(x,y) * (-1)^(x+y)# (8) 截取左上角,大小和输入图像相等result = np.clip(idftCen, 0, 255)  # 截断函数,将数值限制在 [0,255]imgBLPF = result.astype(np.uint8)imgBLPF = imgBLPF[:rows, :cols]plt.subplot(2,3,k+1), plt.title("BLPF mask(D0={})".format(D0[k])), plt.axis('off')plt.imshow(lpFilter[:,:], cmap='gray')plt.subplot(2,3,k+4), plt.title("BLPF rebuild(D0={})".format(D0[k])), plt.axis('off')plt.imshow(imgBLPF, cmap='gray')plt.tight_layout()plt.show()

在这里插入图片描述


(本节完)


版权声明:

youcans@xupt 原创作品,转载必须标注原文链接:【OpenCV 完整例程】82. 频率域巴特沃斯低通滤波器

Copyright 2021 youcans, XUPT

Crated:2022-1-25


欢迎关注 『OpenCV 例程200篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中

【OpenCV 例程200篇】01. 图像的读取(cv2.imread)
【OpenCV 例程200篇】02. 图像的保存(cv2.imwrite)
【OpenCV 例程200篇】03. 图像的显示(cv2.imshow)
【OpenCV 例程200篇】04. 用 matplotlib 显示图像(plt.imshow)
【OpenCV 例程200篇】05. 图像的属性(np.shape)
【OpenCV 例程200篇】06. 像素的编辑(img.itemset)
【OpenCV 例程200篇】07. 图像的创建(np.zeros)
【OpenCV 例程200篇】08. 图像的复制(np.copy)
【OpenCV 例程200篇】09. 图像的裁剪(cv2.selectROI)
【OpenCV 例程200篇】10. 图像的拼接(np.hstack)
【OpenCV 例程200篇】11. 图像通道的拆分(cv2.split)
【OpenCV 例程200篇】12. 图像通道的合并(cv2.merge)
【OpenCV 例程200篇】13. 图像的加法运算(cv2.add)
【OpenCV 例程200篇】14. 图像与标量相加(cv2.add)
【OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)
【OpenCV 例程200篇】16. 不同尺寸的图像加法
【OpenCV 例程200篇】17. 两张图像的渐变切换
【OpenCV 例程200篇】18. 图像的掩模加法
【OpenCV 例程200篇】19. 图像的圆形遮罩
【OpenCV 例程200篇】20. 图像的按位运算
【OpenCV 例程200篇】21. 图像的叠加
【OpenCV 例程200篇】22. 图像添加非中文文字
【OpenCV 例程200篇】23. 图像添加中文文字
【OpenCV 例程200篇】23. 图像添加中文文字
【OpenCV 例程200篇】24. 图像的仿射变换
【OpenCV 例程200篇】25. 图像的平移
【OpenCV 例程200篇】26. 图像的旋转(以原点为中心)
【OpenCV 例程200篇】27. 图像的旋转(以任意点为中心)
【OpenCV 例程200篇】28. 图像的旋转(直角旋转)
【OpenCV 例程200篇】29. 图像的翻转(cv2.flip)
【OpenCV 例程200篇】30. 图像的缩放(cv2.resize)
【OpenCV 例程200篇】31. 图像金字塔(cv2.pyrDown)
【OpenCV 例程200篇】32. 图像的扭变(错切)
【OpenCV 例程200篇】33. 图像的复合变换
【OpenCV 例程200篇】34. 图像的投影变换
【OpenCV 例程200篇】35. 图像的投影变换(边界填充)
【OpenCV 例程200篇】36. 直角坐标与极坐标的转换
【OpenCV 例程200篇】37. 图像的灰度化处理和二值化处理
【OpenCV 例程200篇】38. 图像的反色变换(图像反转)
【OpenCV 例程200篇】39. 图像灰度的线性变换
【OpenCV 例程200篇】40. 图像分段线性灰度变换
【OpenCV 例程200篇】41. 图像的灰度变换(灰度级分层)
【OpenCV 例程200篇】42. 图像的灰度变换(比特平面分层)
【OpenCV 例程200篇】43. 图像的灰度变换(对数变换)
【OpenCV 例程200篇】44. 图像的灰度变换(伽马变换)
【OpenCV 例程200篇】45. 图像的灰度直方图
【OpenCV 例程200篇】46. 直方图均衡化
【OpenCV 例程200篇】47. 图像增强—直方图匹配
【OpenCV 例程200篇】48. 图像增强—彩色直方图匹配
【OpenCV 例程200篇】49. 图像增强—局部直方图处理
【OpenCV 例程200篇】50. 图像增强—直方图统计量图像增强
【OpenCV 例程200篇】51. 图像增强—直方图反向追踪
【OpenCV 例程200篇】52. 图像的相关与卷积运算
【OpenCV 例程200篇】53. Scipy 实现图像二维卷积
【OpenCV 例程200篇】54. OpenCV 实现图像二维卷积
【OpenCV 例程200篇】55. 可分离卷积核
【OpenCV 例程200篇】56. 低通盒式滤波器
【OpenCV 例程200篇】57. 低通高斯滤波器
【OpenCV 例程200篇】58. 非线性滤波—中值滤波
【OpenCV 例程200篇】59. 非线性滤波—双边滤波
【OpenCV 例程200篇】60. 非线性滤波—联合双边滤波
【OpenCV 例程200篇】61. 导向滤波(Guided filter)
【OpenCV 例程200篇】62. 图像锐化——钝化掩蔽
【OpenCV 例程200篇】63. 图像锐化——Laplacian 算子
【OpenCV 例程200篇】64. 图像锐化——Sobel 算子
【OpenCV 例程200篇】65. 图像锐化——Scharr 算子
【OpenCV 例程200篇】66. 图像滤波之低通/高通/带阻/带通
【OpenCV 例程200篇】67. 空间域图像增强的综合应用
【OpenCV 例程200篇】68. 空间域图像增强的综合应用
【OpenCV 例程200篇】69. 连续非周期信号的傅立叶系数
【OpenCV 例程200篇】70. 一维连续函数的傅里叶变换
【OpenCV 例程200篇】71. 连续函数的取样
【OpenCV 例程200篇】72. 一维离散傅里叶变换
【OpenCV 例程200篇】73. 二维连续傅里叶变换
【OpenCV 例程200篇】74. 图像的抗混叠
【OpenCV 例程200篇】75. Numpy 实现图像傅里叶变换
【OpenCV 例程200篇】76. OpenCV 实现图像傅里叶变换
【OpenCV 例程200篇】77. OpenCV 实现快速傅里叶变换
【OpenCV 例程200篇】78. 频率域图像滤波基础
【OpenCV 例程200篇】79. 频率域图像滤波的基本步骤
【OpenCV 例程200篇】80. 频率域图像滤波详细步骤
【OpenCV 例程200篇】81. 频率域高斯低通滤波器
【OpenCV 例程200篇】82. 频率域巴特沃斯低通滤波器
【OpenCV 例程200篇】83. 频率域低通滤波:印刷文本字符修复
【OpenCV 例程200篇】84. 由低通滤波器得到高通滤波器
【OpenCV 例程200篇】85. 频率域高通滤波器的应用
【OpenCV 例程200篇】86. 频率域滤波应用:指纹图像处理
【OpenCV 例程200篇】87. 频率域钝化掩蔽
【OpenCV 例程200篇】88. 频率域拉普拉斯高通滤波
【OpenCV 例程200篇】89. 带阻滤波器的传递函数
【OpenCV 例程200篇】90. 频率域陷波滤波器
【OpenCV 例程200篇】91. 高斯噪声、瑞利噪声、爱尔兰噪声
【OpenCV 例程200篇】92. 指数噪声、均匀噪声、椒盐噪声
【OpenCV 例程200篇】93. 噪声模型的直方图
【OpenCV 例程200篇】94. 算术平均滤波器
【OpenCV 例程200篇】95. 几何均值滤波器
【OpenCV 例程200篇】96. 谐波平均滤波器
【OpenCV 例程200篇】97. 反谐波平均滤波器
【OpenCV 例程200篇】98. 统计排序滤波器
【OpenCV 例程200篇】99. 修正阿尔法均值滤波器
【OpenCV 例程200篇】100. 自适应局部降噪滤波器

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/565821.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

商品管理系统

用Jsp Servlet和Jquery以及SQLServer实现商品管理系统。 采用MVC三层架构进行此程序的开发。 功能分析: 1.登录功能 2.查询和联合查询商品 3.增加商品 4.删除商品 效果演示 登录页面 查询页面 添加商品 点击删除 实现商品管理系统需要数据库和程序两部分。…

【OpenCV 例程200篇】83. 频率域低通滤波:印刷文本字符修复

【OpenCV 例程200篇】83. 频率域低通滤波案例:印刷文本字符修复 欢迎关注 『OpenCV 例程200篇』 系列,持续更新中 欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中 3.5 频率域低通滤波:印刷文本字符修复 低通滤波技术主要…

Python入门基础篇(五)字符串的正则表达式re模块,全面解析!!!

文章目录前言一.匹配字符串的方法1.使用match()方法进行匹配2.使用search()方法进行匹配3.使用findall方法进行匹配二.替换字符串三.使用正则表达式分割字符串前言 Python中提供了re模块用于正则表达式的操作,在实现时可以用re模块提供的多种方法对字符串进行处理&…

Vue 动态数据滚动

使用Vue动态滚动(上下滚动)显示将要展示的讯息。 代码分析: 1.设置固定样式的框架内容 2.设置红色字体内容是动态变化的 3.滚动效果为向上滚动 效果演示: 此效果图的数据是不停滚动变化的 第二张效果图 代码演示&#xff1a…

Python入门进阶篇(六)字典的介绍

请仔细阅读哦!!! 文章目录前言一、Python字典的创建与删除1.字典的创建2.字典的删除二、Python字典的访问1.通过“键值对”访问字典2.遍历字典三、Python字典的添加、修改和删除元素1.字典元素的添加2.修改字典元素3.删除字典元素前言 前面写…

【OpenCV 例程200篇】84. 由低通滤波器得到高通滤波器

【OpenCV 例程200篇】84. 由低通滤波器得到高通滤波器 欢迎关注 『OpenCV 例程200篇』 系列,持续更新中 欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中 4. 频率域高通滤波器 图像边缘化其它灰度的急剧变化与高频分量有关,因此可以…

Vue 数字时钟

用Vue写了一个简单的时间钟。 此时钟内容包括年月日及星期和时分秒。 功能分析&#xff1a; 1.年份&#xff0c;日期&#xff0c;时间的显示 2.动态的变化 3.获取本地时间方法 效果图演示 代码演示 注意&#xff1a;引入vue.min.js架包 <script src"js/vue.min.js…

【OpenCV 例程200篇】85. 频率域高通滤波器的应用

【OpenCV 例程200篇】85. 频率域高通滤波器的应用 欢迎关注 『OpenCV 例程200篇』 系列&#xff0c;持续更新中 欢迎关注 『Python小白的OpenCV学习课』 系列&#xff0c;持续更新中 4. 频率域高通滤波器 图像边缘化其它灰度的急剧变化与高频分量有关&#xff0c;因此可以在频…

【OpenCV 例程200篇】86. 频率域滤波应用:指纹图像处理

【OpenCV 例程200篇】86. 频率域滤波应用&#xff1a;指纹图像处理 欢迎关注 『OpenCV 例程200篇』 系列&#xff0c;持续更新中 欢迎关注 『Python小白的OpenCV学习课』 系列&#xff0c;持续更新中 4. 频率域高通滤波器 图像边缘化其它灰度的急剧变化与高频分量有关&#xf…

商品销售管理系统

用JSP servlet和jquery以及SQLServer数据库实现商品销售管理系统。 功能详解&#xff1a; 1.查询商品 2.添加商品 3.删除商品 4.添加销售记录 5.查看销售记录 效果演示&#xff1a; 进入界面 商品显示页面 删除提示 销售记录查询 商品销售系统需要SQLServer数据库和程序…

【OpenCV 例程200篇】87. 频率域钝化掩蔽

【OpenCV 例程200篇】87. 频率域钝化掩蔽 欢迎关注 『OpenCV 例程200篇』 系列&#xff0c;持续更新中 欢迎关注 『Python小白的OpenCV学习课』 系列&#xff0c;持续更新中 4.2 频率域钝化掩蔽 简单地&#xff0c;从原始图像中减去一幅平滑处理的钝化图像&#xff0c;也可以实…

拼图验证码

H5的Canvas实现一个拼图验证码。 功能分析&#xff1a; 1.验证码图片的生成 2.滑块图片的显示 3.底部滑块的横向移动 4.滑块上的文字显示 效果演示&#xff1a; 初始状态 滑动成功之后 有没有一种心动的感觉呢&#xff1f;&#xff1f;&#xff1f; 代码演示 注意&#x…

【OpenCV 例程200篇】88. 频率域拉普拉斯高通滤波

【OpenCV 例程200篇】88. 频率域拉普拉斯高通滤波 欢迎关注 『OpenCV 例程200篇』 系列&#xff0c;持续更新中 欢迎关注 『Python小白的OpenCV学习课』 系列&#xff0c;持续更新中 4.3 频率域拉普拉斯高通滤波 拉普拉斯算子&#xff08;Laplace&#xff09;是导数算子&#…

顶部导航栏

HTML和CSS实现顶部导航栏&#xff0c;二级菜单的实现。 原理分析&#xff1a; 1.使用ul(无需列表)嵌套ul(无序列表) 2.鼠标放上改变背景颜色 3.二级菜单的显示 效果演示&#xff1a; 初始样式 鼠标放上 代码演示 <!DOCTYPE html> <html><head><meta …

VSCode配置Python的教程

本文基于Windows系统 超详细VSCode安装教程&#xff08;Windows&#xff09; 博主的VSCode专栏&#xff1a;分享使用VSCode的基本操作与各种技巧 刚刚开始学习Python时&#xff0c;按照老师提供的傻瓜式操作配好Python后&#xff0c;发现它自带了一个ide&#xff1a;IDLE&…

【OpenCV 例程200篇】89. 带阻滤波器的传递函数

【OpenCV 例程200篇】89. 带阻滤波器的传递函数 欢迎关注 『OpenCV 例程200篇』 系列&#xff0c;持续更新中 欢迎关注 『Python小白的OpenCV学习课』 系列&#xff0c;持续更新中 5.1 带阻与带通 空间域和频率域线性滤波器可以分为四类&#xff1a;低通滤波器、高通滤波器、带…

用Python海归作图--turtle,画椭圆

想必大家都想过用Python中的turtle画出椭圆吧&#xff0c;自己思考了许久&#xff0c;终于琢磨着画出了椭圆&#xff0c;但是我不知道这个方法是不是最简单的&#xff0c;是不是正确的&#xff0c;如果有错误请指正&#xff0c;如果觉得好用就尽管拿去用&#xff0c;哈哈哈 代码…

【OpenCV 例程200篇】90. 频率域陷波滤波器

【OpenCV 例程200篇】90. 频率域陷波滤波器 欢迎关注 『OpenCV 例程200篇』 系列&#xff0c;持续更新中 欢迎关注 『Python小白的OpenCV学习课』 系列&#xff0c;持续更新中 5.2 陷波滤波器 &#xff08;Notch Filter&#xff09; 陷波滤波器阻止或通过预定的频率矩形邻域中…

简单导航栏

实现一个简单的导航栏。 使用HTML和CSS实现简单的导航栏效果&#xff0c;鼠标放上改变背景杨色。 效果演示 代码演示 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title></head><style>ul{width…

轻松学会python的turtle模块,画一箭穿心、小人儿发射爱心、520表白完整代码,海龟作图小创意

本文导航&#xff1a;若您是直接想要代码&#xff0c;那么请您移步代码区&#xff0c;复制粘贴即可;若您是想了解turtle模块更多知识的话&#xff0c;请您移步turtle模块知识区;若您想看完本文呢&#xff0c;那我定是感激涕零啦(✪ω✪) 您可以选择选择如下区域或不作选择浏览本…