R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现技术应用

回归分析是科学研究中十分重要的数据分析工具。随着现代统计技术发展,回归分析方法得到了极大改进。混合效应模型(Mixed effect model),即多水平模型(Multilevel model)/分层模型(Hierarchical Model)/嵌套模型(Nested Model),无疑是现代回归分析中应用最为广泛的统计模型,代表了现代回归分析主流发展方向。混合效应模型形式灵活可以应对现代科学研究中各种数据情况,与传统回归模型相比具有更为强大数据分析能力,且结果更为可信。本课程将分为复杂数据的回归及混合效应模型概述及数据探索;回归与混合效应模型,包括一般线性回归(lm)、广义线性回归(glm);线性混合效应模型(lmm)及广义线性混合效应模型(glmm);贝叶斯(brms)回归与混合效应模型;相关数据回归与混合效应模型及贝叶斯实现,包括嵌套数据、时间自相关数据,空间自相数据及系统发育数据分析;非线性数据回归分析及贝叶斯实现,包括广义可加(混合)模型和非线性(混合)模型等。

点击查看原文icon-default.png?t=N6B9https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247522233&idx=3&sn=de641f4c293c3fd30d47d826aae0860b&chksm=ce647d52f913f444b9b8d387165ee5245f7903ef19689d7176e9e5b61a3e37f9cd85b14aa954&scene=21#wechat_redirect

 

1复杂数据回归模型的选择策略

1)科学研究中数据及其复杂性

2)回归分析历史、理论基础

3)回归分析基本假设和常见问题

4)复杂数据回归模型选择策略

2如何通过数据探索避免常见统计问题

  1. 数据缺失(missing value)
  2. 零值(zero trouble)
  3. 奇异值/离群值(outliers)
  4. 异质性(heterogeneity)
  5. 数据分布正态性(normality)
  6. 响应变量与预测变量间关系(relationships)
  7. 交互作用项(interaction)
  8. 共线性(collinearity)
  9. 样本独立性(independence)

专题一:回归与混合效应(多水平/层次/嵌套)模型

1.1一般线性模型(lm)

1)基本形式、基本假设、估计方法、参数检验、模型检验

2)一般线性回归、方差分析及协方差分析

3)一般线性回归模型验证

4)一般线性回归模型选择-逐步回归

案例1:鱼类游速与水温关系的回归及协方差分析;

案例2:施肥和种植密度对作物产量的影响

案例3:决定海洋植食性鱼类多样性的决定因子-模型验证

案例4:淡水鱼丰度的环境因子的筛选-逐步回归

1.2广义线性模型(glm)

1) 基本形式、基本假设、估计方法、参数检验、模型检验

2) 0,1数据分析:伯努利分布、二项分布及其过度离散问题

3)计数数据各种情况及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型

4) 广义线性模型的模型比较和选择-似然比LR和AIC

案例1:动物身体特征与患病与否(0,1)的关系的逻辑斯蒂回归

案例2:海豹年龄与攻击行为的关系-0,1数据转化为比率数据分析

案例3:不同实验处理下蚜虫多度的差异分析-计数数据泊松回归

其他案例:零膨胀、零截断数据分析。。。。。。。。。。。。。。。。。。。。

1.3线性混合效应模型(lmm)

1) 线性混合效应模型基本原理

2) 线性混合效应模型建模步骤及实现

3) 线性混合效应模型的预测和模型诊断

4) 线性混合效应模型的多重比较

案例1:睡眠时间与反应速度关系

案例2:多因素实验(分层数据)的多重比较

1.4广义线性混合效应模型(glmm)

1)广义线性混合效应模型基本原理

2)广义线性混合效应模型建模步骤及流程

3)广义线性混合效应模型分析0,1数据

4)广义线性混合效应模型分析计数数据及模型选择:泊松、伪泊松、负二项、零膨胀泊松、零膨胀负二项、零截断泊松及零截断负二项模型

案例1:蝌蚪“变态”与否(0,1)的多因素分析-逻辑斯蒂混合效应模型

案例2:虫食种子多度影响因素的多变量分析-泊松混合效应模型

案例3:模拟计数数据-零膨胀、零截断、过度离散等广义混合效应模型

专题二:贝叶斯(brms)回归与混合效应(多水平/层次/嵌套)模型

2.1贝叶斯回归及混合效应模型上

1)贝叶斯回归分析简介

2)利用brms实现贝叶斯回归分析简介

3)贝叶斯回归分析的模型诊断、交叉验证、预测和作图

4)贝叶斯广义线性模型实现:gamma分布、伯努利分布、二项分布等

案例1:鱼游速与温度关系的贝叶斯回归-结果解读、模型验证、模型诊断

案例2:森林生物量与林龄关系贝叶斯回归-gamma分布、brms参数调整

案例3:动物身体特征与患病与否(0,1)的关系的贝叶斯回归-伯努利分布

案例4:海豹年龄与攻击行为的关系-0,1数据转化为比率数据分析-二项分布

其他案例:贝叶斯分析计数数据过度离散、零膨胀等问题

2.2贝叶斯回归及混合效应模型下

1)贝叶斯线性混合效应模型:实现步骤、模型验证、多重比较

2)贝叶斯广义混合效应模型-计数数据分析:泊松、负二项、零膨胀泊松、零膨胀负二项等

案例1:睡眠时间与反应速度关系的贝叶斯线性混合效应模型

案例2:教师受欢迎程度的多变量预测-贝叶斯线性混合效应模型

案例3:虫食种子多度(计数数据)影响因素的多变量分析-贝叶斯广义混合效应模型

其他案例:贝叶斯分析计数数据过度离散、零膨胀等问题

专题三:相关数据回归分析:嵌套、时间、空间、系统发育相关数据分析

3.1嵌套型随机效应混合效应模型分析及贝叶斯实现

1)数据分层问题及嵌套型随机效应混合效应模型介绍

2)嵌套型随机效应混合效应模型分析步骤及流程及模型选择(MuMIn)

3)嵌套型随机效应混合效应模型的方差分解:ICC、varcomp及贝叶斯法

4)经典方差分解案例讲解

案例1:不同种类海豚年龄多因素预测模型及模型选择(MuMIn)- 嵌套结构

案例2:纲/科/属/种型嵌套随机效应的方差分解及贝叶斯方法

案例3:物种属性可塑性和基因多样性对物种丰富度影响的相对贡献-全模型变差分解

3.2时间相关数据分析及贝叶斯实现

1)回归模型的方差异质性问题及解决途径

2)时间自相关分析:线性及混合效应模型及贝叶斯方法

3)时间自相关+方差异质性分析及贝叶斯实现

案例1:模拟数据方差异质性问题-gls,lmm及brms方法比较

案例2:鸟类多度变化的时间自相关分析-gls vs brms

案例3:资源脉冲与食谱关系分析:方差异质性+时间相关-lmm vs brms

3.3空间相关数据分析及贝叶斯实现

1)空间自相关概述

2)空间自相关问题解决方式:自相关修正参数、空间距离权重法、空间邻接权重法

3)空间自相关问题修正基本流程-gls和lme

4)空间自相关贝叶斯修正-空间距离权重 VS 空间邻接权重

案例1:北方林物种多样性与气候关系-一般线性回归模型空间自相关问题修正

案例2:全球水鸟巢穴捕食率影响因素分析-混合效应模型空间自相关问题修正

3.4系统发育相关数据分析及贝叶斯实现

1、系统发育简介:系统发育假说、系统发育信号及系统发育树

2、系统发育树及系统发育距离矩阵构建

3、系统发育信息纳入回归模型-广义最小二乘(gls)

4、系统发育信息纳入混合效应模型(lmm/glmm)及贝叶斯方法实现案例

案例1:模拟数据-系统发育相关对物种属性影响-gls vs brms

案例2:全球水鸟巢穴捕食率影响因素分析-系统发育混合效应模型:lmm vs brms

专题四:非线性关系数据分析:广义可加(混合)模型(GAM/GAMM)和非线性(混合)(NLM/NLMM)模型

4.1“线性”回归的含义及非线性关系的判定

4.2广义可加(混合效应)(GAM/GAMM)模型及贝叶斯实现

4.3非线性(混合效应)(NLM/NLMM)模型及贝叶斯实现

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/5584.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS7系统MBR、GRUB2、内核启动流程报错问题

目录 🥩Linux启动流程 🥩MBR修复 🍭1、模拟损坏 🍭2、重启测试 🍭3、修复MBR 🍭4、测试系统 🥩GRUB2修复 🍭1、模拟损坏 🍭2、修复GRUB2 🍭3、测试系统 &…

vue中export和export default的使用

<script> export default {name: HelloWorld } $(function () {alert(引入成功) }) </script> 1、export的使用 比喻index.js要使用test.js中的数据&#xff0c;首先在test.js文件中进行导出操作 代码如下&#xff1a; export function list() {alert("list…

Rust vs Go:常用语法对比(四)

题图来自 Go vs. Rust performance comparison: The basics 61. Get current date 获取当前时间 package mainimport ( "fmt" "time")func main() { d : time.Now() fmt.Println("Now is", d) // The Playground has a special sandbox, so you …

多目标灰狼算法(MOGWO)的Matlab代码详细注释及难点解释

目录 一、外部种群Archive机制 二、领导者选择机制 三、多目标灰狼算法运行步骤 四、MOGWO的Matlab部分代码详细注释 五、MOGWO算法难点解释 5.1 网格与膨胀因子 5.2 轮盘赌方法选择每个超立方体概率 为了将灰狼算法应用于多目标优化问题,在灰狼算法中引入外部种群Archi…

Vue第六篇:电商网站图片放大镜功能

本文参考&#xff1a;https://blog.csdn.net/liushi21/article/details/127497487 效果如下&#xff1a; 功能实现分解如下&#xff1a; &#xff08;1&#xff09;商品图区域&#xff1a;主要是浏览图片&#xff0c;根据图片的url显示图片。当鼠标离开此区域时"放大镜区…

ES6解构对象、数组、函数传参

目录 1.对象解构 2.对象解构的细节处理 2.1.解构的值对象中不存在时 2.2.给予解构值默认参数 2.3.非同名属性解构 3.数组解构 3.1基础解构语法 3.2数组嵌套解构 4.函数解构传参 5.解构小练习 在ES6的新语法中新增了解构的方法&#xff0c;它可以让我们很方便的从数组或…

每天五分钟机器学习:多项式非线性回归模型

本文重点 在前面的课程中,我们学习了线性回归模型和非线性回归模型的区别和联系。多项式非线性回归模型是一种用于拟合非线性数据的回归模型。与线性回归模型不同,多项式非线性回归模型可以通过增加多项式的次数来适应更复杂的数据模式。在本文中,我们将介绍多项式非线性回…

关于Arduino IDE库文件存放路径问题总结(双版本)

在开发过程中,如果不注意,库文件存放路径很乱,如果在转移系统环境时,容易忘记备份。编译过程中出现多个可用引用包的位置,为了解决这些问题,要明白各文件夹的默认路径在哪,区别在哪,如有了解不对的地方请指正。 IDE安装目录(默认C盘,自定义可以其他盘符下)IDE升级可…

IDEA如何打包springboot成jar包,并运行、停止、重启,本地依赖不能打包怎么办

1、将springboot项目打包成jar 第一步 这里要注意依赖的包的导入&#xff0c;有pom.xml中网络依赖导入&#xff0c;有的包是本地依赖导入&#xff0c;本地依赖的包只需在pom.xml加入一下代码即可&#xff01; <dependency><groupId>jacob</groupId>//名称…

eclipse中经常遇到的maven相关的问题

maven工程依赖的jar包无法部署到tomcat中 右键maven工程&#xff0c;选择“属性” 将工程在tomcat重新发布即可。 2、Update Project or use Quick Fix maven工程总是提示更新&#xff0c;一更新java版本又回到1.5 在pom.xml添加如下&#xff1a; <build><finalN…

rabbitmq是什么?rabbitmq安装、原理、部署

rabbitmq是什么&#xff1f; MQ的全称是Messagee Queue&#xff0c;因为消息的队列是队列&#xff0c;所以遵循FIFO 先进先出的原则是上下游传递信息的跨过程通信机制。 RabbitMQ是一套开源&#xff08;MPL&#xff09;新闻队列服务软件由 LShift 提供的一个 Advanced Messag…

量子计算机操作系统介绍

下载&#xff1a;https://m.originqc.com.cn/zh 为量子计算编程而生的一站式学习与开发平台&#xff0c;提供量子编程开发环境&#xff0c;支持量子计算资源随时调用&#xff0c;支持量子应用打开即用。 产品特点 无需安装配置 PilotOS客户端集成量子编程开发环境所需的Pyt…

前端对后端路径的下载//流文件下载

1.前端对后端路径的下载 2.流文件下载

【git基本使用】

初识git 一、git安装 1.1 Linux-centos 如果你的的平台是centos&#xff0c;安装git相当简单&#xff0c;以我的centos7.6为例&#xff1a; ⾸先&#xff0c;你可以试着输⼊Git&#xff0c;看看系统有没有安装Git&#xff1a; git-bash: git: command not found 出现像上⾯…

MYSQL练习一答案

练习1答案 构建数据库 数据库 数据表 answer开头表为对应题号答案形成的数据表 表结构 表数据 答案&#xff1a; 1、查询商品库存等于50的所有商品&#xff0c;显示商品编号&#xff0c;商 品名称&#xff0c;商品售价&#xff0c;商品库存。 SQL语句 select good_no,good…

【树上操作】定长裁剪 CF1833 G

Problem - G - Codeforces 题意&#xff1a; 给定一棵n个节点的树&#xff0c;请你减掉一些边&#xff0c;使得剪掉后的每个树只有三个节点&#xff0c; 如果可以&#xff0c;第一行返回减掉边的数量&#xff0c;第二行返回减掉边的编号&#xff1b;如果无解&#xff0c;输出…

Redis的内存回收与内存淘汰策略

对于redis这样的内存型数据库而言&#xff0c;如何删除已过期的数据以及如何在内存满时回收内存是一项很重要的工作。 常见的redis内存回收的工作主要分为两个方面&#xff1a; 清理过期的key在内存不足时回收到足够的内存用以存储新的key 清理过期的key 我们很少在redis中…

Cesium态势标绘专题-普通点(标绘+编辑)

标绘专题介绍:态势标绘专题介绍_总要学点什么的博客-CSDN博客 入口文件:Cesium态势标绘专题-入口_总要学点什么的博客-CSDN博客 辅助文件:Cesium态势标绘专题-辅助文件_总要学点什么的博客-CSDN博客 本专题没有废话,只有代码,代码中涉及到的引入文件方法,从上面三个链…

[golang gin框架] 40.Gin商城项目-微服务实战之Captcha验证码微服务

本次内容需要 gin框架基础知识, golang微服务基础知识才能更好理解 一.Captcha验证码功能引入 在前面,讲解了微服务的架构等,这里,来讲解前面商城项目的 Captcha验证码 微服务 ,captcha验证码功能在前台,后端 都要用到 ,可以把它 抽离出来 ,做成微服务功能 编辑 这个验证码功能…

《零基础入门学习Python》第063讲:论一只爬虫的自我修养11:Scrapy框架之初窥门径

上一节课我们好不容易装好了 Scrapy&#xff0c;今天我们就来学习如何用好它&#xff0c;有些同学可能会有些疑惑&#xff0c;既然我们懂得了Python编写爬虫的技巧&#xff0c;那要这个所谓的爬虫框架又有什么用呢&#xff1f;其实啊&#xff0c;你懂得Python写爬虫的代码&…