二叉树基本知识:
一、树的定义
树是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。
树具有的特点有:
(1)每个结点有零个或多个子结点
(2)没有父节点的结点称为根节点
(3)每一个非根结点有且只有一个父节点
(4)除了根结点外,每个子结点可以分为多个不相交的子树。
树的基本术语有:
若一个结点有子树,那么该结点称为子树根的“双亲”,子树的根称为该结点的“孩子”。有相同双亲的结点互为“兄弟”。一个结点的所有子树上的任何结点都是该结点的后裔。从根结点到某个结点的路径上的所有结点都是该结点的祖先。
结点的度:结点拥有的子树的数目
叶子结点:度为0的结点
分支结点:度不为0的结点
树的度:树中结点的最大的度
层次:根结点的层次为1,其余结点的层次等于该结点的双亲结点的层次加1
树的高度:树中结点的最大层次
森林:0个或多个不相交的树组成。对森林加上一个根,森林即成为树;删去根,树即成为森林。
二、二叉树
1、二叉树的定义
二叉树是每个结点最多有两个子树的树结构。它有五种基本形态:二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。
2、二叉树的性质
性质1:二叉树第i层上的结点数目最多为2i-1(i>=1)
性质2:深度为k的二叉树至多有2k-1个结点(k>=1)
性质3:包含n个结点的二叉树的高度至少为(log2n)+1
性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1
3、性质4的证明
性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1
证明:因为二叉树中所有结点的度数均不大于2,不妨设n0表示度为0的结点个数,n1表示度为1的结点个数,n2表示度为2的结点个数。三类结点加起来为总结点个数,于是便可得到:n=n0+n1+n2 (1)
由度之间的关系可得第二个等式:n=n00+n11+n2*2+1即n=n1+2n2+1 (2)
将(1)(2)组合在一起可得到n0=n2+1
三、满二叉树、完全二叉树和二叉查找树
1、满二叉树
定义:高度为h,并且由2h-1个结点组成的二叉树,称为满二叉树
2、完全二叉树
定义:一棵二叉树中,只有最下面两层结点的度可以小于2,并且最下层的叶结点集中在靠左的若干位置上,这样的二叉树称为完全二叉树。
特点:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。显然,一棵满二叉树必定是一棵完全二叉树,而完全二叉树未必是满二叉树。
面试题:如果一个完全二叉树的结点总数为768个,求叶子结点的个数。
由二叉树的性质知:n0=n2+1,将之带入768=n0+n1+n2中得:768=n1+2n2+1,因为完全二叉树度为1的结点个数要么为0,要么为1,那么就把n1=0或者1都代入公式中,很容易发现n1=1才符合条件。所以算出来n2=383,所以叶子结点个数n0=n2+1=384。
总结规律:如果一棵完全二叉树的结点总数为n,那么叶子结点等于n/2(当n为偶数时)或者(n+1)/2(当n为奇数时)
3、二叉查找树
定义:二叉查找树又被称为二叉搜索树。设x为二叉查找树中的一个结点,x结点包含关键字key,结点x的key值计为key[x]。如果y是x的左子树中的一个结点,则key[y]<=key[x];如果y是x的右子树的一个结点,则key[y]>=key[x]
在二叉查找树种:
(1)若任意结点的左子树不空,则左子树上所有结点的值均小于它的根结点的值。
(2)任意结点的右子树不空,则右子树上所有结点的值均大于它的根结点的值。
(3)任意结点的左、右子树也分别为二叉查找树。
(4)没有键值相等的结点。
要求:将一个数组中的数以二叉树的存储结构存储,并遍历打印。
import java.util.ArrayList;
import java.util.List;public class bintree {public bintree left;public bintree right;public bintree root;
// 数据域private Object data;// 存节点public List<bintree> datas;public bintree(bintree left, bintree right, Object data){this.left=left;this.right=right;this.data=data;}
// 将初始的左右孩子值为空public bintree(Object data){this(null,null,data);}public bintree() {}public void creat(Object[] objs){datas=new ArrayList<bintree>();// 将一个数组的值依次转换为Node节点for(Object o:objs){datas.add(new bintree(o));}
// 第一个数为根节点root=datas.get(0);
// 建立二叉树for (int i = 0; i <objs.length/2; i++) {
// 左孩子datas.get(i).left=datas.get(i*2+1);
// 右孩子if(i*2+2<datas.size()){//避免偶数的时候 下标越界datas.get(i).right=datas.get(i*2+2);}}}
//先序遍历
public void preorder(bintree root){if(root!=null){System.out.println(root.data);preorder(root.left);preorder(root.right);}
}
//中序遍历public void inorder(bintree root){if(root!=null){inorder(root.left);System.out.println(root.data);inorder(root.right);}}
// 后序遍历public void afterorder(bintree root){if(root!=null){System.out.println(root.data);afterorder(root.left);afterorder(root.right);}}public static void main(String[] args) {bintree bintree=new bintree();Object []a={2,4,5,7,1,6,12,32,51,22};bintree.creat(a);bintree.preorder(bintree.root);}
}
要求:从键盘输入数,存为二叉树结构并打印。
import java.util.Scanner;public class btree {private btree left,right;private char data;public btree creat(String des){Scanner scanner=new Scanner(System.in);System.out.println("des:"+des);String str=scanner.next();if(str.charAt(0)<'a')return null;btree root=new btree();root.data=str.charAt(0);root.left=creat(str.charAt(0)+"左子树");root.right=creat(str.charAt(0)+"右子树");return root;}public void midprint(btree btree){
// 中序遍历if(btree!=null){midprint(btree.left);System.out.print(btree.data+" ");midprint(btree.right);}}public void firprint(btree btree){
// 先序遍历if(btree!=null){System.out.print(btree.data+" ");firprint(btree.left);firprint(btree.right);}}public void lastprint(btree btree){
// 后序遍历if(btree!=null){lastprint(btree.left);lastprint(btree.right);System.out.print(btree.data+" ");}}public static void main(String[] args) {btree tree = new btree();btree newtree=tree.creat("根节点");tree.firprint(newtree);System.out.println();tree.midprint(newtree);System.out.println();tree.lastprint(newtree);}
}
输出结果:
des:根节点
a
des:a左子树
e
des:e左子树
c
des:c左子树
1
des:c右子树
1
des:e右子树
b
des:b左子树
1
des:b右子树
1
des:a右子树
d
des:d左子树
f
des:f左子树
1
des:f右子树
1
des:d右子树
1
a e c b d f 先序
c e b a f d 中序
c b e f d a 后序
二叉树的遍历次序:
前序顺序是根节点排最先,然后同级先左后右;中序顺序是先左后根最后右;后序顺序是先左后右最后根。
例如:
比如上图二叉树遍历结果
前序遍历:ABCDEFGHK
中序遍历:BDCAEHGKF
后序遍历:DCBHKGFEA
分析中序遍历如下图,中序比较重要(java很多树排序是基于中序,后面讲解分析)