整理一些NLP学习资源(不止NLP,本人主要关注NLP),如果有更好的,欢迎分享_
- NLP 中文自然语言处理相关资料
https://github.com/crownpku/Awesome-Chinese-NLP
Contents 列表
- Chinese NLP Toolkits 中文NLP工具
Toolkits 综合NLP工具包
Popular NLP Toolkits for English/Multi-Language 常用的英文或支持多语言的NLP工具包
Chinese Word Segment 中文分词
Information Extraction 信息提取
QA & Chatbot 问答和聊天机器人
-
Corpus 中文语料
-
Organizations 中文NLP学术组织及竞赛
-
Industry 中文NLP商业服务
-
Learning Materials 学习资料
-
中文语料库:包括情感词典 情感分析 文本分类 单轮对话 中文词典 知乎
https://github.com/GeneralZh/Chinese_Corpus -
pytorch学习
https://github.com/chenyuntc/pytorch-book
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://www.pytorchtutorial.com/pytorch-tutorials-list/
- AI最新paper阅读 Browse state-of-the-art
https://paperswithcode.com/sota
https://mp.weixin.qq.com/s/JwGgaYRpL9HhzOHau7yY1g
数据下载
论文摘要:
https://paperswithcode.com/media/about/papers-with-abstracts.json.gz
论文与代码之间的链接:
https://paperswithcode.com/media/about/links-between-papers-and-code.json.gz
评估排行榜:
https://paperswithcode.com/media/about/evaluation-tables.json.gz
参考:
NLP 进展:
https://github.com/sebastianruder/NLP-progress
斯坦福问答数据集(Stanford Question answer Dataset, SQuAD)
https://rajpurkar.github.io/SQuAD-explorer/
State-of-the-art result for all Machine Learning Problems
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems
- 自己动手做聊天机器人教程
http://www.shareditor.com/bloglistbytag/?tagname=自己动手做聊天机器人
https://github.com/lc222/ChatBotCourse
6.Kaggle 项目实战(教程) = 文档 + 代码 + 视频(欢迎参与)
https://github.com/apachecn/kaggle
-
100+ Chinese Word Vectors 上百种预训练中文词向量
https://github.com/Embedding/Chinese-Word-Vectors -
吴恩达老师的机器学习&深度学习课程个人笔记
https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes
https://github.com/fengdu78/deeplearning_ai_books
-
斯坦福 nlp课程 CS224n: Natural Language Processing with Deep Learning
http://web.stanford.edu/class/cs224n/ -
ACL
http://aclasb.dfki.de/#tpc%7Cattention%20model*docP16-1059*
https://acl2018.org/programme/papers/
https://aclanthology.info/events/acl-2018
https://aclanthology.info/events/acl-2017
11.机器学习数据集
http://archive.ics.uci.edu/ml/index.php
作为机器学习社区的一项服务,我们目前维护着468个数据集。
- GitHub新项目快报
http://www.open-open.com/github/view/github2018-06-11.html
13.《COMS W4995 Applied Machine Learning》由哥伦比亚大学开设
https://www.cs.columbia.edu/~amueller/comsw4995s19/
https://www.cs.columbia.edu/~amueller/comsw4995s19/schedule/
https://github.com/amueller/COMS4995-s19
https://www.bilibili.com/video/av22123631/
- 大规模中文自然语言处理语料 Large Scale Chinese Corpus for NLP
https://github.com/brightmart/nlp_chinese_corpus
40个中文NLP词库
https://github.com/fighting41love/funNLP
https://mp.weixin.qq.com/s/WL6hqAn2-glpPOiVAxcS5w
非正式汉语数据集资源 内容来源分别“豆瓣读书”和Chiphell论坛
https://mp.weixin.qq.com/s/xzHMzQ4uVBJaUR8b_KNptA
- 深度学习资源列表 All You Need to Know About Deep Learning
https://github.com/osforscience/deep-learning-ocean
Table of Contents
Introduction
Motivation
What’s the point of this open source project?
Papers
Models
Convolutional Networks
Recurrent Networks
Autoencoders
Generative Models
Probabilistic Models
Core
Optimization
Representation Learning
Understanding and Transfer Learning
Reinforcement Learning
Applications
Image Recognition
Object Recognition
Action Recognition
Caption Generation
Natural Language Processing
Speech Technology
Datasets
Image
General
Face
Object Recognition
Action recognition
Text and Natural Language Processing
General
Text classification
Question Answering
Sentiment Analysis
Machine Translation
Summarization
Speech Technology
Courses
Books
Blogs
Tutorials
Frameworks
Contributing
Pull Request Process
Final Note
16. 医疗深度学习技术指南
https://mp.weixin.qq.com/s/7rsY_ZkZ28pk_-oJhAU-mQ
- 200多个最好的机器学习、NLP和Python相关教程
https://mp.weixin.qq.com/s/hsJXEV0gBO5rLujYWY3F7g
- PyTorch资源
关于github的pytorch相关内容的完整列表,如不同的模型、实现、帮助库、教程等
https://mp.weixin.qq.com/s/Gci97dSsLoZepf1RC_sYoA
https://github.com/bharathgs/Awesome-pytorch-list
Contents
Pytorch & related libraries
NLP & Speech Processing
Computer Vision
Probabilistic/Generative Libraries
Other libraries
Tutorials & examples
Paper implementations
Pytorch elsewhere
- 最新知识图谱论文清单
https://mp.weixin.qq.com/s/Yg-ggqTg5HlcvrH9BKC0YA