注:下列游戏都建立在双方都有最优策略的情况下,若未加以说明,则每人每次至少取一个石子。
例1:取石子游戏之一
有两个游戏者:A和B。有n颗石子。
约定:两人轮流取走石子,每次可取1、2或3颗。A先取,取走最后一颗石子的人获胜。
问题:A有没有必胜的策略?
分析:这是小学必备奥数题之一,我们可以很容易的知道,当n为0,4,8,12……时,A必定会输,因为不论A取多少,B只要和A共同取走4即可;当n不为0,4,8,12……时,A只需要将n取成4的倍数,这样就变成了B先取,B一定会输,所以A一定会赢。
经过我们的分析发现,对这个游戏而言,0,4,8,12……这些状态是对于先手的必败状态,而其他状态是对于先手的必胜状态,因此,我们现在介绍一下有关博弈的一些名词和概念
1、平等组合游戏
- 两人游戏。
- 两人轮流走步。
- 有一个状态集,而且通常是有限的。
- 有一个终止状态,到达终止状态后游戏结束。
- 游戏可以在有限的步数内结束。
- 规定好了哪些状态转移是合法的。
- 所有规定对于两人是一样的。
因此我们的例1提到的游戏即为一个平等组合游戏,但是我们生活中常见的棋类游戏,如象棋、围棋等,均不属于平等组合游戏,因为双方可以移动的棋子不同,不满足最后一个条件;而我们后续提到的游戏,以及博弈中的其他游戏,基本属于平等组合游戏
2、N状态(必胜状态),P状态(必败状态)
像例1的分析一样,0,4,8,12……等状态就是对于先手的P状态(必败状态),其他的则是对于先手的N状态(必胜状态)。
那么我们定义两个状态之间的转换:
- 所有的终止状态都为P状态
- 对于任意的N状态,存在至少一条路径可以转移到P状态
- 对于任意的P状态,只能转移到N状态
证明过于简单,这里不再赘述,我们只需要明白一点,每个人都会选择最策略即可。
当然这里所说的都是最后走步的人获胜的游戏,至于那些走到最后失败的游戏,我们在最后做了一个简单的讲解(Anti Nim)。
例2:取石子游戏之二
将例1的游戏扩展一下,我们定义一个集合S=p1,p2,...,pk(k∈Z∗)S=p1,p2,...,pk(k∈Z∗)S={p1,p2,...,pk}(k∈Z∗)S={p1,p2,...,pk}(k∈Z∗)S={p1,p2,...,pk}(k∈Z∗) S=\{{p_{1},p_{2},...,p_{k}}\}(k \in Z^*)S=p1,p2,...,pk(k∈Z∗)S=p1,p2,...,pk(k∈Z∗)S={p1,p2,...,pk}(k∈Z∗)a=ak,b>bk,那么,取走