java八股文面试[JVM]——垃圾回收器

jvm结构总结

 

在这里插入图片描述

在这里插入图片描述

常见的垃圾回收器有哪些?

 

 

CMS(Concurrent Mark Sweep)

整堆收集器: G1

由于整个过程中耗时最长并发标记并发清除过程中,收集器线程都可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行。老年代收集器(新生代使用ParNew)

参数控制:

-XX:+UseConcMarkSweepGC 使用CMS收集器
-XX:+ UseCMSCompactAtFullCollection Full GC后,进行一次碎片整理;整理过程是独占的,会引起停顿时间变长
-XX:+CMSFullGCsBeforeCompaction 设置进行几次Full GC后,进行一次碎片整理
-XX:ParallelCMSThreads 设定CMS的线程数量(一般情况约等于可用CPU数量)

cms是一种预处理垃圾回收器,它不能等到old内存用尽时回收,需要在内存用尽前,完成回收操作,否则会导致并发回收失败
  

G1是目前技术发展的最前沿成果之一,HotSpot开发团队赋予它的使命是未来可以替换掉JDK1.5中发布的CMS收集器

上面提到的垃圾收集器,收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔阂了,它们都是一部分(可以不连续)Region的集合。

在这里插入图片描述

每个Region被标记了E、S、O和H,说明每个Region在运行时都充当了一种角色,其中H是以往算法中没有的,它代表Humongous,这表示这些Region存储的是巨型对象(humongous object,H-obj),当新建对象大小超过Region大小一半时,直接在新的一个或多个连续Region中分配,并标记为H。

为了避免全堆扫描,G1使用了Remembered Set来管理相关的对象引用信息。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏了。

如果不计算维护Remembered Set的操作,G1收集器的运作大致可划分为以下几个步骤:

1、初始标记(Initial Making)

2、并发标记(Concurrent Marking)

3、最终标记(Final Marking)

4、筛选回收(Live Data Counting and Evacuation)

看上去跟CMS收集器的运作过程有几分相似,不过确实也这样。初始阶段仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可以用的Region中创建新对象,这个阶段需要停顿线程,但耗时很短。并发标记阶段是从GC Roots开始对堆中对象进行可达性分析,找出存活对象,这一阶段耗时较长但能与用户线程并发运行。而最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但可并行执行。最后筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划,这一过程同样是需要停顿线程的,但Sun公司透露这个阶段其实也可以做到并发,但考虑到停顿线程将大幅度提高收集效率,所以选择停顿。下图为G1收集器运行示意图:

G1收集器是基于标记整理算法实现的,不会产生空间碎片,可以精确地控制停顿,将堆划分为多个大小固定的独立区域,并跟踪这些区域的垃圾堆积程度,在后台维护一个优先列表,每次根据允许的收集时间,优先回收垃圾最多的区域(Garbage First)。

 垃圾回收器比较

在这里插入图片描述

垃圾回收器选择策略 

客户端程序 : Serial + Serial Old;

吞吐率优先的服务端程序(比如:计算密集型) : Parallel Scavenge + Parallel Old;

响应时间优先的服务端程序 :ParNew + CMS。
 

知识来源:

【2023年面试】jvm有哪些垃圾回收器,实际中如何选择_哔哩哔哩_bilibili

JVM学习笔记(一)_卷心菜不卷Iris的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/54412.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于JSP+Servlet+Mysql员工信息管理系统

基于JSPServletMysql员工信息管理系统 一、系统介绍二、功能展示三.其他系统实现五.获取源码 一、系统介绍 项目类型:Java web项目 项目名称:基于JSPServlet的员工/客户/人员信息管理系统 项目架构:B/S架构 开发语言:Java语言…

使用CSS的@media screen 规则为不同的屏幕尺寸设置不同的样式(响应式图片布局)

当你想要在不同的屏幕尺寸或设备上应用不同的CSS样式时,可以使用 media 规则,特别是 media screen 规则。这允许你根据不同的屏幕特性,如宽度、高度、方向等,为不同的屏幕尺寸设置不同的样式。 具体来说,media screen…

React绑定antd输入框,点击清空或者确定按钮实现清空输入框内容

其实实现原理和vue的双向绑定是一样的,就是监听输入框的onChange事件,绑定value值,当输入框内容发生变化后,就重新设置这个value值。 示例代码:我这里是统一在handleCancel这个函数里面处理清空逻辑了,你们…

【大数据】Doris:基于 MPP 架构的高性能实时分析型数据库

Doris:基于 MPP 架构的高性能实时分析型数据库 1.Doris 介绍 Apache Doris 是一个基于 MPP(Massively Parallel Processing,大规模并行处理)架构的高性能、实时的分析型数据库,以极速易用的特点被人们所熟知&#xff…

Elasticsearch 入门安装

1.Elasticsearch 是什么 The Elastic Stack, 包括 Elasticsearch、 Kibana、 Beats 和 Logstash(也称为 ELK Stack)。能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索、分析和可视化。 Elaticsearch,简称为…

[NLP]LLM--transformer模型的参数量

1. 前言 最近,OpenAI推出的ChatGPT展现出了卓越的性能,引发了大规模语言模型(Large Language Model, LLM)的研究热潮。大规模语言模型的“大”体现在两个方面:模型参数规模大,训练数据规模大。以GPT3为例,GPT3的参数量…

CodeLlama本地部署的实战方案

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

00-音视频-概述

有很多场合会使用的音视频,比如安防、视频闸机、影音播放器、视频通话,短视频等等。 从摄像头采集到用户观看,这中间涉及到了很多技术。 用户一般观看的高清视频1080P30帧。若按24位RGB对视频进行存储,一个60分钟视频所占空间 …

STM32 Cubemx配置串口收发

文章目录 前言注意事项Cubemx配置printf重定向修改工程属性修改源码 测试函数 前言 最近学到了串口收发,简单记录一下注意事项。 注意事项 Cubemx配置 以使用USART1为例。 USART1需配置成异步工作模式Asynchronous。 并且需要使能NVIC。 printf重定向 我偏向…

JMeter 接口自动化测试:从入门到精通的完全指南

JMeter 是一个开源的负载测试工具,它可以模拟多种协议和应用程序的负载,包括 HTTP、FTP、SMTP、JMS、SOAP 和 JDBC 等。在进行接口自动化测试时,使用 JMeter 可以帮助我们快速地构建测试用例,模拟多种场景,发现接口的性…

论文阅读_条件控制_ControlNet

name_en: Adding Conditional Control to Text-to-Image Diffusion Models name_ch: 向文本到图像的扩散模型添加条件控制 paper_addr: http://arxiv.org/abs/2302.05543 date_read: 2023-08-17 date_publish: 2023-02-10 tags: [‘图形图像’,‘大模型’,‘多模态’] author: …

什么是计算机视觉,计算机视觉的主要任务及应用

目录 1. 什么是计算机视觉 2. 计算机视觉的主要任务及应用 2.1 图像分类 2.1.1 图像分类的主要流程 2.2 目标检测 2.2.1 目标检测的主要流程 2.3 图像分割 2.3.1 图像分割的主要流程 2.4 人脸识别 2.4.1 人脸识别的主要流程 对于我们人类来说,要想认出身边…

生成地图展示【Python思路】

# 1.导包 import json from pyecharts.charts import Map #导入关于编写地图的包 from pyechart.options import * #全局设置# 2.得到地图对象 map Map()# 3.打开事先准备好的JSON数据文件 f open("D:/Typora 记事本/notebook/Python/Exercise_data/疫情.txt",&…

三个视角解读ChatGPT在教学创新中的应用

第一,我们正处于一个学生使用ChatGPT等AI工具完成作业的时代,传统的教育方法需要适应变化。 教育工作者不应该因为学生利用了先进技术而惩罚他们,相反,应该专注于让学生去挑战超越AI能力范围的任务。这需要我们重新思考教育策略和…

matlab使用教程(25)—常微分方程(ODE)选项

1.ODE 选项摘要 解算 ODE 经常要求微调参数、调整误差容限或向求解器传递附加信息。本主题说明如何指定选项以及每个选项与哪些微分方程求解器兼容。 1.1 选项语法 使用 odeset 函数创建 options 结构体,然后将其作为第四个输入参数传递给求解器。例如&#xff0…

Folyd 多源最短路

目录 简介 实现 代码 关于Floyd的题目 简介 首先我们要知道a到b的最短路是什么 a到b的最短路是从a点到b点的最小距离(花费) 那多源最短路呢就是能求任意a和b,之间的最短路 那么Folyd是多源最短路,也就是求任意a和b&#x…

python实现卡尔曼滤波代码详解

Kalman滤波算法的原理可以参考: 卡尔曼滤波理解 python中filterpy库中实现了各种滤波算法, 其中就包括了kalman滤波算法。 具体实现代码: https://github.com/rlabbe/filterpy/blob/master/filterpy/kalman/kalman_filter.py 本文针对该代码…

视频云存储/安防监控EasyCVR视频汇聚平台接入GB国标设备时,无法显示通道信息该如何解决?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

三极管NPN、PNP的区别及简单应用

目录 一、NPN、PNP三极管的概念 二、NPN、PNP三极管的区别 三、三极管NPN、PNP的简单应用 一、NPN、PNP三极管的概念 NPN型三极管: 由两块N型半导体和一块P型半导体组成,P型半导体在中间,两块N型半导体在两侧。 三极管是电子电路中最重要的…

elementui table 在浏览器分辨率变化的时候界面异常

异常点: 界面显示不完整,表格卡顿,界面已经刷新完成,但是表格的宽度还在一点一点变化,甚至有无线延伸的情况 思路: 1. 使用doLayout 这里官方文档有说明, 所以我的想法是,监听浏览…