最长递增子序列 子串_最长递增子序列

最长递增子序列 子串

Description:

描述:

This is one of the most popular dynamic programming problems often used as building block to solve other problems.

这是最流行的动态编程问题之一,通常用作解决其他问题的基础。

Problem statement:

问题陈述:

Given a sequence A of size N, find the length of the longest increasing subsequence from the given sequence.

给定一个大小为N的序列A ,从给定序列中找到最长的递增子序列的长度

The longest increasing subsequence means to find a subsequence of a given sequence where the subsequence's elements are sorted in increasing order, and the subsequence is longest possible. This subsequence is not necessarily contiguous, or unique. Longest increasing subsequence is strictly increasing.

最长的增长子序列意味着找到给定序列的子序列,其中该子序列的元素按升序排序,并且该子序列可能最长。 该子序列不一定是连续的或唯一的。 最长增加的子序列严格增加。

    Input:
N=7
Sequence:
{2, 3, 4, 0, 1, 2, 3, 8, 6, 4}
Output:
Length of Longest increasing subsequence is 5
Longest increasing subsequence= {0, 1, 2, 3, 8} or {0, 1, 2, 3, 4}

Explanation with example

举例说明

The possible increasing sub-sequences are,

可能增加的子序列是

Of Length 1 //each element itself is an increasing sequence

长度为1 //每个元素本身都是递增序列

Longest Increasing Subsequence (1)
Longest Increasing Subsequence (2)
Longest Increasing Subsequence (3)
Longest Increasing Subsequence (4)
Longest Increasing Subsequence (5)

So, on...

所以...

Longest Increasing Subsequence (6)
Longest Increasing Subsequence (7)

So, on...

所以...

Longest Increasing Subsequence (8)
Longest Increasing Subsequence (9)

So, on...

所以...

Longest Increasing Subsequence (10)

No more
Of Length 6
None

不再
长度6
没有

So, the longest increasing subsequence length is 5.

因此,最长的递增子序列长度是5。

问题解决方法 (Problem Solution Approach)

Of course, in brute-force we can simply generate all increasing sequences and find the longest one. But it would take exponential time which is not a feasible solution. Hence, we choose Dynamic programming to solve.

当然,在蛮力作用下,我们可以简单地生成所有递增的序列并找到最长的序列。 但是,这将花费指数时间,这不是可行的解决方案。 因此,我们选择动态规划来解决。

We create a DP table to store longest increasing subsequence length.
It's intuitive that the minimum value would be 1 as each element represents the primitive sequence which is an increasing one.

我们创建一个DP表来存储最长的递增子序列长度。
直观的是,最小值将为1,因为每个元素代表原始序列,该序列是递增的。

So, the base value is 1.

因此,基准值为1。

Now,

现在,

    Lis(i) = longest increasing subsequence starting from index 0 to index i

So,
To compute L(i) the recursion function is,

所以,
为了计算L(i) ,递归函数为

Longest Increasing Subsequence (i)

As, the base value is 1, for every index i, L(i) is at least 1.

这样,对于每个索引i ,基值为1, L(i)至少为1。

    
1) Create the DP array, Lis[n]
2) Initialize the DP array.
for i=0 to n-1
lis[i]=1;
3) Now, to compute the Lis[i]
for index  i=1 to n-1         
for previous index j=0 to i-1
// if (arr[i],arr[j]) is inceasing sequence
if(lis[i]<lis[j]+1 && a[i]>a[j])
lis[i]=lis[j]+1;
end for
end for 

Initially DP table,

最初是DP表,

Longest Increasing Subsequence (11)
Longest Increasing Subsequence (12)

So, the maximum out of this is 5
Hence, LIS=5.

因此,最大数量为5
因此,LIS = 5。

C++ implementation:

C ++实现:

#include <bits/stdc++.h>
using namespace std;
int max(int a, int b)
{
if (a > b)
return a;
else
return b;
}
int LIS(vector<int> a, int n)
{
int lis[n];
//base case
for (int i = 0; i < n; i++)
lis[i] = 1;
//fill up table
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (lis[i] < lis[j] + 1 && a[i] > a[j])
lis[i] = lis[j] + 1;
}
}
//return LIS
return *max_element(lis, lis + n);
}
int main()
{
int n, item;
cout << "Sequence size:\n";
scanf("%d", &n);
//input the array
vector<int> a;
cout << "Input sequence:\n";
for (int j = 0; j < n; j++) {
scanf("%d", &item);
a.push_back(item);
}
cout << "Length of longest incresing subsequence is: " << LIS(a, n) << endl;
return 0;
}

Output

输出量

Sequence size:
10
Input sequence:
2 3 4 0 1 2 3 8 6 4
Length of longest incresing subsequence is: 5

翻译自: https://www.includehelp.com/icp/longest-increasing-subsequence.aspx

最长递增子序列 子串

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/543913.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

beta版本项目冲刺

项目冲刺第一天项目冲刺第二天项目冲刺第三天项目冲刺第四天项目冲刺第五天项目冲刺第六天项目冲刺第七天转载于:https://www.cnblogs.com/malinlin/p/5006041.html

mkdir 函数_PHP mkdir()函数与示例

mkdir 函数PHP mkdir()函数 (PHP mkdir() function) The full form of mkdir is "Make Directory", the function mkdir() is used to create a directory. mkdir的完整格式为“ Make Directory” &#xff0c; 函数mkdir()用于创建目录。 Syntax: 句法&#xff1a…

WPF自定义控件与样式(5)-Calendar/DatePicker日期控件自定义样式及扩展

原文:WPF自定义控件与样式(5)-Calendar/DatePicker日期控件自定义样式及扩展一&#xff0e;前言 申明&#xff1a;WPF自定义控件与样式是一个系列文章&#xff0c;前后是有些关联的&#xff0c;但大多是按照由简到繁的顺序逐步发布的等&#xff0c;若有不明白的地方可以参考本…

Cookie介绍及使用

Cookie学习: 作用:解决了发送的不同请求的数据共享问题 使用: Cookie的创建和存储//创建Cookie对象Cookie cnew Cookie("mouse","");//设置cookie(可选)//设置有效期c.setMaxAge(int seconds);//设置有效路径c.setPath(String uri);//响应Cookie信息给客…

acm模式_ACM的完整形式是什么?

acm模式ACM&#xff1a;计算机协会 (ACM: Association for Computing Machinery) ACM is an abbreviation of the "Association for Computing Machinery (ACM)". ACM是“计算机协会(ACM)”的缩写 。 It is an international academic association or scholarly soc…

c语言:用%f输出实数,只能得到6位小数及求float型数据的有效位数

1.用%f输出实数&#xff0c;只能得到6位小数。程序&#xff1a;#include<stdio.h>int main(){double a 1.0;printf("%f\n",a/3);return 0;}结果&#xff1a;0.333333请按任意键继续. . .2.float型数据的有效位数。程序&#xff1a;#include<stdio.h>int…

二分法查找算法

二分法查找索引值 二分法查找算法步骤&#xff1a;(前提&#xff1a;查询数组为一组有序数)1、定义低位和高位指针low&#xff0c;high&#xff1b;2、通过判断low和high的所指的数值中间值mid来判断关键值是在高位段还是低位段。例题解析&#xff1a; 查找5的索引值 sum {1,2…

bba70_BBA的完整形式是什么?

bba70BBA&#xff1a;工商管理学士 (BBA: Bachelor of Business Administration) BBA is an abbreviation of Bachelor of Business Administration also spelled as B.B.A. In the field of Business Administration, it is an undergraduate degree program. This is a degre…

Qt和纹理

2019独角兽企业重金招聘Python工程师标准>>> test 转载于:https://my.oschina.net/assange/blog/537631

计算机图形学图形旋转_计算机图形学翻译

计算机图形学图形旋转计算机图形学| 翻译 (Computer Graphics | Translations) Transformation techniques mean to modify the current shape or object in a particular manner. Changing of an object after creation, in terms of position or even size is known as trans…

AP 1532E register   Cisco 2504 AP注册WLC

客户的环境是&#xff1a;WLC是 2504 的AP的型号是 1532E的首先要是版本匹配&#xff0c;那么我们就要查一个兼容性列表&#xff0c;请看附件同时&#xff0c;我们要把WLC的版本升级到AIR-CT2500-K9-8-1-111-0.aes 这个版本&#xff1b;同时由于瘦AP 1532E的版本是 Cisco IOS S…

Python 位运算、判断、循环

位运算 1、原码、反码和补码 计算机内部使用补码来表示 2、按位运算实现快速计算 (1) 通过^(异或)快速交换两个整数。 a^b b^a a^b (2) 通过a&(-a)快速获取a的最后为1 位置的整数。 00 00 01 01 -> 5 & 11 11 10 11 -> -5 - - - 00 00 00 01-> 14、利用位运…

dbms数据库管理系统_数据库管理系统(DBMS)中的视图

dbms数据库管理系统DBMS College professor once realized that students feel sad when they see their friends marks higher than them and it creates a negative impact on them. It gave the Professor an idea to create a view table in his student academic result d…

C#中IDisposable 回收非托管资源

C#中IDisposable 更多2014/9/7 来源&#xff1a;C#学习浏览量&#xff1a;4185学习标签&#xff1a; IDisposable本文导读&#xff1a;C#中IDisposable接口的主要用途是释放非托管资源。当不再使用托管对象时&#xff0c;垃圾回收器会自动释放分配给该对象的内存。但无法预测进…

css导航栏_使用CSS的导航栏

css导航栏CSS | 导航栏 (CSS | Navigation Bar) Developing websites is great but developing a user-friendly website is even greater. So how does one design a user-friendly website? What tools to use? Well, there are many tools to mention which are quite hel…

Python 集合、序列基础知识

集合 Python 中set与dict类似&#xff0c;也是一组key的集合&#xff0c;但不存储value。由于key不能重复&#xff0c;所以&#xff0c;在set中&#xff0c;没有重复的key。 key为不可变类型&#xff0c;即可哈希的值。 num {} print(type(num)) # <class dict> num …

Java代理系列-静态代理

2019独角兽企业重金招聘Python工程师标准>>> 代理模式可以做很多事&#xff0c;像hibernate&#xff0c;spring都使用了代理模式。 spring的aop就是用代理做的。 本系列分为4章&#xff0c;静态代理&#xff0c;动态代理热身&#xff0c;动态代理&#xff0c;cglib代…

什么是证书颁发机构?

CA&#xff1a;证书颁发机构 (CA: Certificate Authority) CA is an abbreviation of the "Certificate Authority". CA是“证书颁发机构”的缩写 。 It is also known as a "certification authority", is a trusted corporation or organization that i…

SQL----函数

在看script的时候&#xff0c;经常会发现一些看不懂的地方。搜索了一下&#xff0c;发现sql还有很多的函数&#xff0c;这是以前不了解的。在这里做一个练习跟总结--------|length()返回字符串的长度select length(alliance_id) from application;--------|substr(string,st…

ajax的模式_AJAX的完整形式是什么?

ajax的模式AJAX&#xff1a;异步JavaScript和XML (AJAX: Asynchronous JavaScript and XML) AJAX is an abbreviation of Asynchronous JavaScript and XML. It is an organized collection of technologies and not of a single technology. Informing a collection of web De…