计算机图形学图形旋转_计算机图形学翻译

计算机图形学图形旋转

计算机图形学| 翻译 (Computer Graphics | Translations)

Transformation techniques mean to modify the current shape or object in a particular manner. Changing of an object after creation, in terms of position or even size is known as translation. Here, we will be studying about how 2D translation is performed in computer graphics.

转换技术意味着以特定方式修改当前形状或对象。 创建后根据位置甚至大小更改对象的过程称为平移。 在这里,我们将研究如何在计算机图形学中执行2D翻译。

2D翻译 (2D Translation)

The translation is the movement in a straight line of an object from one position to another.

平移是对象从一个位置到另一位置沿直线的移动。

The movement of objects without deforming the shape of the object is Translation. Here the object is shifted from one position to another position and from one co-ordinate location to another.

在不变形对象形状的情况下移动对象就是平移。 在这里,对象从一个位置移动到另一位置,并从一个坐标位置移动到另一位置。

The translating polygon i.e. all vertex of the polygon is converted to a new position. Similarly, curved objects are translated. To change the position of the circle or ellipse its center coordinates are transformed, then the object is drawn using the new co-ordinates.

平移多边形(即多边形的所有顶点)将转换到新位置。 同样,弯曲的对象也可以平移。 要更改圆形或椭圆形的位置,请变换其中心坐标,然后使用新的坐标绘制对象。

Translation of point:

点的翻译:

To translate a point from coordinate position (x, y) to another (x, y), we add algebraically the translation distances Tx & Ty to the original co-ordinates.

为了将一个点从坐标位置(x,y)转换到另一个(x,y) ,我们将代数转换距离TxTy代入原始坐标。

Translation equation:

翻译等式:

    x1 = x + Tx
y1 = y + Ty 	
(The translation pair (Tx, Ty) is called as shift vector)

Example:

例:

In the following image you can see that after applying translation, point C gets shifted to C'.

在下图中,您可以看到在应用平移之后,点C移至C'

Translations

Example:

例:

Given a square with coordinate points A (0, 3), B (3, 3), C (3, 0), D (0, 0). Apply the translation with distance 1 towards X axis and 1 towards Y axis. We have to find the new co-ordinates of the square.

给定一个具有坐标点A(0,3),B(3,3),C(3,0),D(0,0)的正方形。 将平移应用到X轴,距离1到Y轴。 我们必须找到正方形的新坐标。

Solution:  Given-

解决方案:给定-

Old co-ordinates of the square = A (0, 3), B (3, 3), C (3, 0), D (0, 0)

正方形的旧坐标= A(0,3),B(3,3),C(3,0),D(0,0)

Translation vector = (Tx, Ty) = (1, 1)

翻译向量=(Tx,Ty)=(1,1)

对于坐标A(0,3) (For Coordinates A (0, 3))

 Let the new coordinates of corner A = (Xnew, Ynew).

设角A的新坐标=(X new ,Y new )。

Applying the translation equations, we have-

应用平移方程式,我们有-

  • Xnew= Xold + Tx = 0 + 1 = 1

    X = X + T x = 0 + 1 = 1

  • Ynew= Yold + Ty = 3 + 1 = 4

    Y = Y + T y = 3 +1 = 4

Thus, New coordinates of corner A = (1, 4).

因此,角A的新坐标=(1,4)。

For Coordinates B (3, 3)

对于坐标B(3,3)

Let the new coordinates of corner B = (Xnew, Ynew).

令角B的新坐标=(X new ,Y new )。

Applying the translation equations, we have-

应用平移方程式,我们有-

  • Xnew= Xold + Tx = 3 + 1 = 4

    X = X + T x = 3 +1 = 4

  • Ynew= Yold + Ty = 3 + 1 = 4

    Y = Y + T y = 3 +1 = 4

Thus, New coordinates of corner B = (4, 4).

因此,角B的新坐标=(4,4)。

For Coordinates C (3, 0)

对于坐标C(3,0)

Let the new coordinates of corner C = (Xnew, Ynew).

令角的新坐标C =(X new ,Y new )。

Applying the translation equations, we have-

应用平移方程式,我们有-

  • Xnew= Xold + Tx = 3 + 1 = 4

    X = X + T x = 3 +1 = 4

  • Ynew= Yold + Ty = 0 + 1 = 1

    Y = Y + T y = 0 + 1 = 1

Thus, New coordinates of corner C = (4, 1).

因此,角C的新坐标=(4,1)。

For Coordinates D (0, 0)

对于坐标D(0,0)

Let the new coordinates of corner D = (Xnew, Ynew).

令角的新坐标D =(X new ,Y new )。

Applying the translation equations, we have-

应用平移方程式,我们有-

  • Xnew= Xold + Tx = 0 + 1 = 1

    X = X + T x = 0 + 1 = 1

  • Ynew= Yold + Ty = 0 + 1 = 1

    Y = Y + T y = 0 + 1 = 1

Thus, New coordinates of corner D = (1, 1).

因此,角D的新坐标=(1,1)。

翻译自: https://www.includehelp.com/computer-graphics/translations.aspx

计算机图形学图形旋转

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/543903.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AP 1532E register   Cisco 2504 AP注册WLC

客户的环境是:WLC是 2504 的AP的型号是 1532E的首先要是版本匹配,那么我们就要查一个兼容性列表,请看附件同时,我们要把WLC的版本升级到AIR-CT2500-K9-8-1-111-0.aes 这个版本;同时由于瘦AP 1532E的版本是 Cisco IOS S…

Python 位运算、判断、循环

位运算 1、原码、反码和补码 计算机内部使用补码来表示 2、按位运算实现快速计算 (1) 通过^(异或)快速交换两个整数。 a^b b^a a^b (2) 通过a&(-a)快速获取a的最后为1 位置的整数。 00 00 01 01 -> 5 & 11 11 10 11 -> -5 - - - 00 00 00 01-> 14、利用位运…

dbms数据库管理系统_数据库管理系统(DBMS)中的视图

dbms数据库管理系统DBMS College professor once realized that students feel sad when they see their friends marks higher than them and it creates a negative impact on them. It gave the Professor an idea to create a view table in his student academic result d…

C#中IDisposable 回收非托管资源

C#中IDisposable 更多2014/9/7 来源:C#学习浏览量:4185学习标签: IDisposable本文导读:C#中IDisposable接口的主要用途是释放非托管资源。当不再使用托管对象时,垃圾回收器会自动释放分配给该对象的内存。但无法预测进…

css导航栏_使用CSS的导航栏

css导航栏CSS | 导航栏 (CSS | Navigation Bar) Developing websites is great but developing a user-friendly website is even greater. So how does one design a user-friendly website? What tools to use? Well, there are many tools to mention which are quite hel…

Python 集合、序列基础知识

集合 Python 中set与dict类似&#xff0c;也是一组key的集合&#xff0c;但不存储value。由于key不能重复&#xff0c;所以&#xff0c;在set中&#xff0c;没有重复的key。 key为不可变类型&#xff0c;即可哈希的值。 num {} print(type(num)) # <class dict> num …

Java代理系列-静态代理

2019独角兽企业重金招聘Python工程师标准>>> 代理模式可以做很多事&#xff0c;像hibernate&#xff0c;spring都使用了代理模式。 spring的aop就是用代理做的。 本系列分为4章&#xff0c;静态代理&#xff0c;动态代理热身&#xff0c;动态代理&#xff0c;cglib代…

什么是证书颁发机构?

CA&#xff1a;证书颁发机构 (CA: Certificate Authority) CA is an abbreviation of the "Certificate Authority". CA是“证书颁发机构”的缩写 。 It is also known as a "certification authority", is a trusted corporation or organization that i…

SQL----函数

在看script的时候&#xff0c;经常会发现一些看不懂的地方。搜索了一下&#xff0c;发现sql还有很多的函数&#xff0c;这是以前不了解的。在这里做一个练习跟总结--------|length()返回字符串的长度select length(alliance_id) from application;--------|substr(string,st…

ajax的模式_AJAX的完整形式是什么?

ajax的模式AJAX&#xff1a;异步JavaScript和XML (AJAX: Asynchronous JavaScript and XML) AJAX is an abbreviation of Asynchronous JavaScript and XML. It is an organized collection of technologies and not of a single technology. Informing a collection of web De…

JAVA Opencv在图片上添加中文

问题描述&#xff1a; 将图片进行均值、中值、高斯滤波&#xff0c;高斯边缘检测&#xff0c;并在图片上添加中文文字。 一、算法思想 首先经过opencv的一系列操作&#xff0c;例如高斯模糊、均值模糊等操作后、用Imgcodecs.imwrite方法将图片写出到指定的位置。再利用java…

手机站点击商务通无轨迹解决方法

手机站点击商务通咨询按钮是很多时候会出现后台无法统计到访客的浏览轨迹的情况&#xff0c;这种情况是因为部分手机浏览器打开新的页面不传递来路页面地址信息所导致的。下面为大家介绍一种能解决这一情况的方法&#xff1a; 代码如下&#xff1a; <script type"text/…

检查Python中是否存在文件

An ability to check if the file exists or not, is very crucial in any application. Often, the applications perform verifications like, 在任何应用程序中&#xff0c;检查文件是否存在的能力至关重要。 通常&#xff0c;应用程序会执行验证&#xff0c;例如&#xff0…

双向tvs和单向tvs_TVS的完整形式是什么?

双向tvs和单向tvsTVS&#xff1a;Thirukkurungudi Vengaram Sundram (TVS: Thirukkurungudi Vengaram Sundram) TVS is an abbreviation of Thirukkurungudi Vengaram Sundram. It is a multinational motorcycle business corporation, which is one of the largest manufactu…

使用系统的CoreLocation定位

//// ViewController.m// LBS//// Created by tonnyhuang on 15/8/28.// Copyright (c) 2015年 tonnyhuang. All rights reserved.//#import "ViewController.h"#import <CoreLocation/CoreLocation.h>//首先&#xff0c;我们需要在工程中导入CoreLocation…

cisc 和 risc_RISC和CISC | 电脑组织

cisc 和 risc1)复杂指令集架构(CISC) (1) Complex Instruction Set Architecture (CISC)) The basic idea behind is to make hardware complex as a single instruction will do all the operation such as loading, evaluating and storing operations just like a division …

黑五已火 电商跨境成燎原之势

我国有着众多的电商&#xff0c;这些电商为了促进消费总是想出千奇百怪的营销节日&#xff0c;比如年中大促、双十一、双十二、年终大促&#xff0c;在今年更是多出了6.18促销、双十萌节&#xff0c;还有一个慢慢火起来的“黑五”。“黑五”与之前提到的众多营销节日有所不同&a…

dir函数_PHP dir()函数与示例

dir函数PHP dir()函数 (PHP dir() function) dir() function is an instance of the directory class, it is used to read the directory, it includes handle and path properties – which can be used to get the resource id and path to the directory. Both handle and …

引用头文件报错 .pch引用不了其他的.h文件

2019独角兽企业重金招聘Python工程师标准>>> 一、编绎显示Unknown type name “CGFloat” 错误解决方法 将Compile Sources As 改为 Objective-C 二、如果是extern const引起的。直接加头文件 #import <UIKit/UIKit.h> 最后在 .h文件 #import <UIKit/UIK…

ibm mq的交互命令模式_IBM的完整形式是什么?

ibm mq的交互命令模式IBM&#xff1a;国际商业机器 (IBM: International Business Machines) IBM is an abbreviation of International Business Machines. It is an I.T based multinational and consulting corporation which is also an American trusted brand in the IT …