最小跳数

Description:

描述:

This problem is a standard interview problem which has been featured in interview rounds of Adobe, Amazon, Oyo rooms etc.

此问题是标准的采访问题,已在Adobe,Amazon,Oyo房间等的采访回合中出现。

Problem statement:

问题陈述:

Given an array of integers where each element represents the max number of steps that can be made forward from that element. The task is to find the minimum number of jumps to reach the end of the array (starting from the first element). If an element is 0, then there is no way to move from there.

给定一个整数数组,其中每个元素代表可以从该元素进行的最大步数。 任务是找到到达数组末尾(从第一个元素开始)的最小跳转数。 如果元素为0,则无法从那里移动。

    Input:
The first line is T, total number of test cases.  
In the following 2*T lines,
Each test case has two lines.
First line is a number n denoting the size of the array.
Next line contains the sequence of integers a1, a2, ..., an
Output:
For each test case, in a new line, 
print the minimum number of jumps. 
If it's not possible to reach the end the print -1

Example:

例:

    Input:
1
11
1 3 5 3 1 2 6 0 6 2 4
Output:
4

Explanation:

说明:

    Let's first use greedy method.
According to greedy,
At first jump, 
it will move from index 0 to 1 
(arr[0]=1, so only 1 step jump is allowed)
At second jump,
It will move from index 1 to 4 
(arr[1]=3, so only 3 step jump is allowed)
At third jump,
it will move from index 4 to 6 
(arr[4]=2, so only 2 step jump is allowed)
Now arr[6]=0, so no more jump possible. It would result -1.
But, it's not the result. Thus, greedy fails. 

Since, the array value is maximum jump possible we have to check for all options up to maximum jumps. Obviously, a recursive function which would generate many overlapping sub problems. Let's check how we can solve the above example using recursion.

由于数组值是可能的最大跳转,因此我们必须检查所有选项,直到最大跳转为止。 显然,递归函数会产生许多重叠的子问题。 让我们检查一下如何使用递归解决上面的示例。

Minimum number of jumps (1)

After first jump (in this case only one move possible)

第一次跳动后(在这种情况下,只能移动一次)

Minimum number of jumps (2)

After second jump (I only took the best child (on solution path) of the recursion tree, you can try all)

第二次跳转后(我只带了递归树上最好的孩子(在解决方案路径上),可以尝试全部)

Minimum number of jumps (3)

After third jump (I only took the best child (on solution path) of the recursion tree, you can try all)

第三次跳转后(我只带了递归树上最好的孩子(在解决方案路径上),可以尝试全部)

Minimum number of jumps (4)

After fourth jump (That's end)

第四跳之后(结束)

Minimum number of jumps (5)

So, answer is 4.

答案是4。

Let's check the DP approach to solve the above problem.

让我们检查一下DP方法来解决上述问题。

Solution approach:

解决方法:

    1)  If the starting index has value 0 then we can't reach the end 
if the array size is more than 1, so return -1.
2)  If array size is 1, we are at the end already, so return 1 
which is minimum jump.
3)  Initialize DP[n]  with all elements having value INT_MAX
4)  for i=0 to n-1
for j=i+1 to maximum of(n-1,j+arr[i])
//i.e,last index or upto theindex maximum jump can reach
dp[j]=minimum(dp[j],dp[i]+1)
where dp[i]+1=one jump added with jumps required to reach index i 
end for
end for
// not updated in the loop refers that reach end is not possible
5)  if dp[n-1]==INT_MAX 
return -1
else
return dp[n-1]

C++ Implementation:

C ++实现:

#include <bits/stdc++.h>
using namespace std;
int min(int x,int y){
return (x<y)?x:y;
}
int minimumjumps(vector<int> arr,int n){
if(n==1)
return 1;
if(arr[0]==0)
return -1;
int dp[n];
for(int i=0;i<n;i++)
dp[i]=INT_MAX;
dp[0]=0;
for(int i=0;i<n;i++){
for(int j=i+1;j<=((i+arr[i])>(n-1)?(n-1):(i+arr[i]));j++){
dp[j]=min(dp[j],dp[i]+1);
}
}
return dp[n-1];
}
int main()
{
int t,n,item;
cout<<"output -1 if reaching end not possible\n";
cout<<"Enter number of testcases\n";
scanf("%d",&t);
for(int i=0;i<t;i++){
cout<<"Enter array size\n";
scanf("%d",&n);
vector<int> a;
cout<<"Enter elements:\n";
for(int j=0;j<n;j++){
scanf("%d",&item);
a.push_back(item);
}
int result=minimumjumps(a,n);
cout<<"Result is: ";
if(result==INT_MAX)
cout<<-1<<endl;
else
cout<<result<<endl;
}
return 0;
}

Output

输出量

output -1 if reaching end not possible
Enter number of testcases
1
Enter array size
11
Enter elements:
1 3 5 3 1 2 6 0 6 2 4
Result is: 4

翻译自: https://www.includehelp.com/icp/minimum-number-of-jumps.aspx

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/540655.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Web安全之机器学习入门》一 第3章 机器学习概述

第3章 机器学习概述机器学习的概念非常多&#xff0c;从有监督到无监督&#xff0c;从聚类到回归&#xff0c;从浅层学习到深度学习&#xff0c;从准确率到召回率&#xff0c;它们究竟是什么意思呢&#xff1f;本章将介绍最主要的几个概念。不少机器学习初学者甚至包括业内老司…

ue 抗锯齿 渲染序列失灵_最大的锯齿形序列

ue 抗锯齿 渲染序列失灵Problem statement: 问题陈述&#xff1a; Given a square matrix of size n x n, find the sum of the Zigzag sequence with the largest sum. A zigzag sequence starts from the top and ends at the bottom. Two consecutive elements of sequence…

团队-团队编程项目作业名称-成员简介及分工

成员&#xff1a;祁昊 分工&#xff1a;ui设计&#xff0c;美工&#xff0c;详细设计。转载于:https://www.cnblogs.com/qihao10086/p/7496101.html

python身份运算符_Python身份运算符

python身份运算符Identity operators are used to perform the comparison operation on the objects i.e. these operators check whether both operands refer to the same objects (with the same memory location) or not. 身份运算符用于对对象执行比较操作&#xff0c;即…

Oracle-Decode()函数和CASE语句的不同

Oracle-Decode()函数和CASE语句的区别&#xff1a; 具体示例如下&#xff1a; 1.CASE语句&#xff1a; SELECT CASE SIGN(5 - 5) WHEN 1 THEN Is Positive WHEN -1 THEN Is Negative ELSE Is Zero END FROM DUAL; 后台实现&#xff1a; if (SIGN(5 – 5) 1) { Is Positive; } …

ai智能模式_AI的完整形式是什么?

ai智能模式AI&#xff1a;人工智能 (AI: Artificial Intelligence) AI is an abbreviation of "artificial intelligence", which occasionally called machine intelligence in the field of computer science. It is intelligence made understandable by machines…

centos6.5安装python3.6

1、下载Python安装包 wget https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz 2、解压安装包&#xff1a;tar -xzvf Python-3.6.0.tgz 3、进入安装包路径&#xff1a;cd Python-3.6.04、编译安装包 注意&#xff1a;prefix参数用于指定将Python安装在新目录&#xff…

BE的完整形式是什么?

工学学士 (BE: Bachelor of Engineering) BE is an abbreviation of Bachelor of Engineering. It is a bachelors degree program for under graduation in engineering and the duration of this course is 4 years. It is provided in many countries like India, Canada, S…

史上最详细Windows版本搭建安装React Native环境配置

说在前面的话: 感谢同事金晓冰倾情奉献本环境搭建教程 之前我们已经讲解了React Native的OS X系统的环境搭建以及配置&#xff0c;鉴于各大群里有很多人反应在Windows环境搭建出现各种问题&#xff0c;今天就特意更新一贴来说明。关于os x环境搭建以及react native入门学习资料…

程序代码错误检测_错误检测代码

程序代码错误检测错误检测代码 (Error Detecting Codes) A group of bits is known as words, and these words move as an entity from one block to another in the digital system. While moving from one part to another within the system via transmission media, the b…

Web浏览器端通过https 使用mqtt通讯

做的产品简介 这次需要做一个web端的上课平台&#xff0c;有音视频通讯&#xff0c;有白板(画板)功能&#xff0c;有文字通讯等。技术点 音视频通讯需要走Webrtc需要跟ios, android, windows, mac 客户端互联互通一般通讯通过mqtt协议MQTT简介 MQTT&#xff08;Message Queuing…

vga显示模式_VGA的完整形式是什么?

vga显示模式VGA&#xff1a;视频图形阵列 (VGA: Video Graphics Array) VGA is an abbreviation of "Video Graphics Array". VGA是“视频图形阵列”的缩写 。 It is a three-row 15-pin DE-15 connector display hardware developed by IBM in 1987. It was first …

【iCore4 双核心板_FPGA】例程十一:FSMC总线通信实验——独立地址模式

实验原理&#xff1a; STM32F767上自带FMC控制器&#xff0c;本实验将通过FMC总线的地址独立模式实现STM32与FPGA 之间通信&#xff0c;FPGA内部建立RAM块,FPGA桥接STM32和RAM块&#xff0c;本实验通过FSMC总线从STM32向 RAM块中写入数据&#xff0c;然后读取RAM出来的数据进行…

世界粮农组织五大健康食品_粮农组织的完整形式是什么?

世界粮农组织五大健康食品粮农组织&#xff1a;请注意 (FAO: For the Attention Of) FAO is an abbreviation of "For the Attention Of". FAO是“ For the Attention Of”的缩写 。 It is an expression, which is commonly used in the Gmail platform. When a ma…

http 412 precondition failed

2019独角兽企业重金招聘Python工程师标准>>> 今天在谷歌浏览器上刷新页面的时候&#xff0c;出现了 如下失败信息&#xff1a; HTTP 412 (Precondition Failed) 想想当时的动作是在发送ajax请求失败之后&#xff0c;再刷新&#xff0c;就会出现上面的失败问题。百度…

Python | Pyplot标签

There are the following types of labels, 标签有以下几种&#xff0c; 1)X轴贴标 (1) X-axis labelling) plt.xlabel(Number Line)# Default labellingplt.xlabel(Number Line, colorgreen)#Font colour Changedplt.xlabel(Number Line, colorGreen, fontsize15)#Font size …

LTNS的完整形式是什么?

LTNS&#xff1a;很久没看到 (LTNS: Long Time No See) LTNS is an abbreviation of "Long time, no see". LTNS是“长时间&#xff0c;看不见”的缩写 。 It is an English phrase used when people meet and greet each other after a while when in between they…

MySQL Index Condition Pushdown

2019独角兽企业重金招聘Python工程师标准>>> 一、Index Condition Pushdown简介 ICP&#xff08;index condition pushdown&#xff09;是mysql利用索引&#xff08;二级索引&#xff09;元组和筛字段在索引中的where条件从表中提取数据记录的一种优化操作。ICP的思…

ADBB的完整形式是什么?

ADBB&#xff1a;所有完成的再见 (ADBB: All Done Bye Bye) ADBB is an abbreviation to All Done Bye Bye. ADBB是All Done Bye Bye的缩写。 Whenever a person wants to convey his message to another person, they use some sort of short-form in the text messages. ADB…

c 环境

系统ubuntu sudo apt-get install vim g openssh-server libgl1-mesa-dev检查下安装的版本gcc -v g -v make -v gdb -v 转载于:https://blog.51cto.com/skinglzw/1964449